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When different types of functional genomics data are generated on
single cells from different samples of cells from the same hetero-
geneous population, the clustering of cells in the different samples
should be coupled. We formulate this “coupled clustering” problem
as an optimization problem and propose the method of coupled
nonnegative matrix factorizations (coupled NMF) for its solution.
The method is illustrated by the integrative analysis of single-cell
RNA-sequencing (RNA-seq) and single-cell ATAC-sequencing (ATAC-
seq) data.
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Biological samples of interest in clinical or experimental
studies are often heterogeneous mixtures; i.e., a sample may

consist of many subpopulations of cells with distinct cellular states.
To resolve the heterogeneity and to characterize the constituent
subpopulations, it is necessary to generate functional genomic
data at the single-cell level. An exciting recent development in
genomics technology has been the emergence of methods for
single-cell (sc) measurements; for example, scRNA sequencing
(scRNA-seq) (1) enables transcription profiling, scATAC se-
quencing (scATAC-seq) (2) identifies accessible chromatin re-
gions, and sc-bisulfite sequencing (3) measures DNA methylation,
all at the single-cell level.
Often, the first step in the analysis of single-cell data is clus-

tering, that is, to classify cells into the constituent subpopula-
tions. Clustering methods for scRNA-seq data are discussed in
refs. 4 and 5, and clustering of scATAC-seq data is described in
ref. 6. Existing methods, however, do not address the increasingly
common situation where two or more types of sc-genomics ex-
periments are performed on different subsamples from the same
cell population. For example, Fig. 1A depicts the situation when
one subsample is analyzed by scRNA-seq while another is ana-
lyzed by scATAC-seq. Although the clustering methods de-
veloped for scRNA-seq and scATAC-seq were each shown to be
capable of identifying distinct cell types, the association of gene
expression changes to chromatin accessibility dynamics better
defines cell types and lineages, especially in complex tissues (7,
8). To connect these two assays, one might suggest to separately
cluster each data type, followed by an integration afterward.
However, such approaches can be problematic because scATAC-
seq and scRNA-seq data do not always possess a similar power
for detection of cell types (9). Furthermore, clusters may be data
type specific due to technical noise. So it is advantageous to
systematically couple the two clustering processes in such a way
that the clustering of the cells in the scRNA-seq sample can also
make use of information from the scATAC-seq sample, and vice
versa (10). In this paper, we formulate this “coupled clustering”
problem as an optimization problem and introduce a method,
named coupled nonnegative matrix factorizations (coupled NMF),
for its solution.

Approach
Coupled NMF. We first introduce our approach in general terms.
Let O be a p1 by n1 matrix representing data on p1 features for n1
units in the first sample; then a “soft” clustering of the units in
this sample can be obtained from a nonnegative factorization
O = W1H1 as follows: The ith column of W1 gives the mean
vector for the ith cluster of units, while the jth column of H1 gives
the assignment weights of the jth unit to the different clusters.
Similarly, clustering of the second sample can be obtained from
the factorization E =W2H2, where E is the p2 by n2 matrix of data
on p2 features (which are different from the features measured
in the first sample) for n2 units in the second sample. To couple
two matrix factorizations, we introduce a term trðWT

2 AW1Þ,
where A is a “coupling matrix.” The construction of A is ap-
plication specific but depends on the assumption that, based on
scientific understanding or prior data, it is possible to identify a
subset of features in one sample that are linearly predictable
from the features measured in the other sample. In such a
situation, we can take A to be the matrix representation of the
linear prediction operator.

Significance

Biological samples are often heterogeneous mixtures of dif-
ferent types of cells. Suppose we have two single-cell datasets,
each providing information on a different cellular feature and
generated on a different sample from this mixture. Then, the
clustering of cells in the two samples should be coupled as both
clusterings are reflecting the underlying cell types in the same
mixture. This “coupled clustering” problem is a new problem
not covered by existing clustering methods. In this paper, we
develop an approach for its solution based on the coupling of
two nonnegative matrix factorizations. The method should be
useful for integrative single-cell genomics analysis tasks such
as the joint analysis of single-cell RNA-sequencing and single-
cell ATAC-sequencing data.
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Once the coupling is defined this way, we can obtain the fac-
torizations of the two data matrices by solving the following
optimization problem (Fig. 1C):

minW1, H1,W2,H2≥0
1
2

��O−W1H1
��2
F +

λ1
2

��E−W2H2
��2
F − λ2tr

�
WT

2 AW1
�

+ μ
���W1

��2
F +

��W2
��2
F

�
. [1]

There are three tuning parameters: λ1, λ2, and μ. The first two
terms are clustering the two samples. The third term is to induce
the consistency of features from the second sample with linear
transformed features from the first sample. The fourth term
controls the growth ofW1 andW2. After solving the optimization,
the cluster profile and the cluster assignments for the kth cluster
in the first sample can be obtained respectively from the kth
column of W1 and the kth row of H1. Similarly, the clustering
in the second sample can be obtained from W2 and H2 (Fig. 1D).

Application in Single-Cell Genomic Data. We apply the coupled
NMF approach to cluster scRNA-seq and scATAC-seq data. In
this application, Oij denotes the degree of openness (i.e., accessi-
bility) of the ith region in the jth cell (6). By a region we mean
either a predefined regulatory element (RE) or a peak called from
merged scATAC-seq data. From scRNA-seq data, we compute
the data matrix E where Egh denotes the expression level of the gth
gene in the hth cell (11). Details are given in Materials and
Methods, Data Processing. Note that the scATAC-seq and the
scRNA-seq data are not measured in the same cell (Fig. 1A).
To get the coupling matrix A, we take advantage of our recent

work on modeling paired gene expression and chromatin ac-
cessibility data (7) and use a diverse panel of cell lines with both
expression and accessibility data to train a prediction model of
gene expression from accessibility (see Materials and Methods for
details). After fitting the model, we select a set of “well-
predicted” genes (named gene set S) and use this set of genes’
RE–gene associations to couple the two types of data. In this
application, AW1 gives the cluster-specific predictions of the
expression of genes based on the cluster-specific accessibilities of
REs, and hence the trace term enforces our expectation that the
expression of genes should be consistent with the predictions
based on accessibility of REs. As the coupling matrix A is noisy,

we can refine the coupling iteratively, as follows, to get a bet-
ter result. We assign single cells to clusters according to the
assignment weights given by H1 and H2. After getting the cluster
results, we choose cluster-specific genes based on scRNA-seq
clustering. We restrict the rows of A and W2 to the cluster-
specific genes and get a submatrix of ~A of A and fW2 of W2.
Then we replace the A and W2 in the trace term by the sub-
matrices and recluster the cells by optimizing the objective
function in Eq. 1. We continue until the cluster assignments are
not changed by further iterations.

Results
Results on Simulation Data. We first evaluate the performance of
our method in a simulation study. Single-cell datasets are sim-
ulated by sampling reads from a bulk dataset (Materials and
Methods). The bulk datasets used in our simulation study are
from two very similar cell types from a hematopoietic differen-
tiation process, namely common myeloid progenitor (CMP) and
megakaryocyte erythroid progenitor (MEP) (12). For each of
these two cell types, we first generated 100 scRNA-seq datasets
and 100 scATAC-seq datasets (Materials and Methods).
To simulate a scRNA-seq dataset from a mixed population

with two cell types, we simply mix the 200 scRNA-seq data from
two cell lines together and treat them as a single scRNA-seq
dataset. We apply k-means and NMF to cluster the mixed cells.
We run k-means 50 times with different random initial values
and choose the result that gives the minimum total sum of
within-cluster distances. Similarly, we run NMF 50 times and
choose the result that gives the minimum approximation error in
the Frobenius norm. The results of all 50 runs on scRNA-seq and
scATAC-seq data by k-means and NMF are shown in SI Ap-
pendix, Fig. S1. Finally, we perform coupled NMF clustering
based on both the 200-cell mixture of the scRNA-seq sample and
the 200-cell mixture of the scATAC-seq sample (SI Appendix,
Fig. S3). The performance of the three clustering results
(k-means on scRNA-seq only, NMF on scRNA-seq only, and
coupled NMF on both scRNA-seq and scATAC-seq) is presented
in Fig. 2A. A similar comparison on the clustering results of
scATAC-seq is illustrated in Fig. 2B. The convergence of cou-
pled NMF is given in SI Appendix, Fig. S2. It is seen that coupling
leads to greatly improved results, reducing the assignment error
rate by more than threefold over the other two methods (Fig. 2C).

Assessment of Prediction Model Before Coupling. We are interested
in applying coupled NMF to analyze data generated from dif-
ferentiation of a mouse embryonic stem cell, namely scRNA-seq
and scATAC-seq at day 4 after retinoic acid (RA) treatment
(Materials and Methods). Before analyzing the single-cell data,
we want to assess whether the model learned from the diverse
panel (i.e., matrix A) provides reliable predictive power to con-
nect chromatin accessibility and gene expression in this biological
context. We thus generated bulk RNA-seq and ATAC-seq at day
4 of the RA treatment (named RA day 4). Using the model
trained on the diverse panel, we predicted the expression of genes
in set S at RA day 4. SI Appendix, Fig. S3 shows the observed vs.
predicted gene expressions. It is seen that genes in S were pre-
dicted with high accuracy (R2 = 0.75, r = 0.87). This gives us
confidence in using the model to initiate the coupling.

Results on Real Single-Cell Data. Next, we use coupled NMF to
analyze RA day-4 scRNA-seq and scATAC-seq data. We first
perform coupled NMF with K = 2 (i.e., two clusters) and then
visualize the clustering result on Spearman correlation-based
t-distributed stochastic neighbor embedding (t-SNE) plots. There
are clearly two separated clusters in both t-SNE plots of scATAC-
seq and scRNA-seq. Increasing the number of clusters to three,
we can see three well-separated clusters in t-SNE plots. How-
ever, when K is increased to 4 or 5, the separation among clus-
ters is no longer clear (Fig. 3A and SI Appendix, Fig. S4). We also
calculate clustering stability based on the method in Brunet et al.

Single cell  RNA-seq

Single cell ATAC-seq

Gene 1
Gene 2

.

.

.
Gene G

Cell 1 … Cell N
Gene expression E

Region 1
Region 2

.

.

.
Region M

Cell N+1 … Cell N+H
Chroma�n accessibility O

Peaks

REs

Genes

REs

Samples

public data: Paired gene expression 
and chroma�n accessibility

PECA
RE-Gene associa�on A

REs Genes

min
1

2 2

Cell type 1
Cell type 2
Cell type 3

Coupled clustering model
Gene expression

Genes

Chroma�n accessibility

Peaks

A B

CD

Fig. 1. Overview of the coupled-clustering method. (A) Single-cell gene
expression and single-cell chromatin accessibility data. (B) Learning coupling
matrix from public data. (C) Coupled clustering model. (D) Cluster-specific
gene expression and chromatin accessibility.
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(13) for K = 2–5 (SI Appendix, Fig. S5). The results show that
clustering results are stable when K = 2 or 3, while the results are
not stable when K is increased to 4 or 5. Hence, we set K = 3 for
the remaining of the analysis.
For each of the three clusters, we identify cluster-specific

transcription factors (TFs) based on their expression from
RNA-seq data and compare their motif activities in scATAC-seq
data (Fig. 3). Here the motif activity of a TF in a cell reflects the
enrichment level of the TF’s motif in accessible REs in a scATAC-
seq dataset (Materials and Methods). Fig. 3B shows the motif activities
and expressions of some cluster-specific TFs on the t-SNE plots (Fig.
3B and SI Appendix, Fig. S6). Fig. 3C shows the heat maps of motif
activities and expressions for a subset of cluster-specific TFs, namely
those with expression transcripts per million (TPM) greater than 10 in
at least 40 cells. It is seen that cluster-1–specific TFs (e.g., Ebf1, Lhx1,
and Neurod1) have high motif activities in the corresponding cluster
of the scATAC-seq sample. Similarly, cluster-2–specific TFs, Gata4,
Foxa2, and Jun, have high motif activity in cluster 2 and cluster-3–
specific TFs, Rfx4, Sox2, Sox9, Pou3f2, and Pou3f4, have high motif
activity in cluster 3. This result shows that our method leads to highly
consistent TF expression and TF motif activities within each of the
inferred constituent subpopulations.
To further assess the coupled NMF results, we select cluster-

specific genes from RNA-seq data and cluster-specific peaks
from ATAC-seq data. We test whether the cluster-specific genes
from scRNA-seq data are significantly overlapped with the genes
with nearby (100 kb) cluster-specific ATAC-seq peaks by per-
forming Fisher’s exact test based on the overlap of two sets of genes
(SI Appendix, Fig. S7). Fig. 3D gives the P values for all possible
pairings of the RNA-seq clusters with ATAC-seq clusters. It is seen
that the pairings identified by coupled NMF indeed gave dramatically
more significant P values and higher fold changes than the other
possible pairings.

Coupled Clustering of Single Cells Sheds Light on Stem Cell Differentiation.
The cluster-specific gene expression profiles and chromatin ac-
cessibility profiles provided by our method can provide useful
insight into the constituent subpopulations. First, we use cluster-
specific peaks from scATAC-seq data to annotate the clusters.
We collect previously determined enhancers in mouse tissues at
seven developmental stages from 11.5 d postconception until
birth (14). Fig. 4 A–C shows the degree of overlap of our
cluster-specific peaks with these developmental enhancers for
different tissues and at different developmental stages. The
number represents 10,000 times the Jaccard index (intersection
over union) and NA indicates that enhancer data for that tissue in
that stage are not available. The results show that cluster-1–specific
peaks are enriched in forebrain and midbrain enhancers at E12.5
and E13.5. Cluster-2–specific peaks are enriched in heart enhancers
at E15.5 and E16.5. Cluster-3–specific peaks are enriched in
forebrain enhancers from E12.5 to E16.5 and also in midbrain,
hindbrain, and neural tube. In addition, we also collect experi-
mentally validated tissue-specific enhancers from the VISTA
database (https://enhancer.lbl.gov/) and overlap them to cluster-
specific peaks. Fig. 4D shows the percentage of tissue-specific
VISTA enhancers overlapped to cluster-specific peaks. Only
those tissues with at least one enhancer overlapping with the
cluster-specific peaks are shown. Enhancers from nervous system-
associated tissue (neural tube, cranial nerve, hind brain, mid-
brain, forebrain, trigeminal V, dorsal root ganglion, eye, nose)
have overlap with cluster-specific peaks from cluster 1 and
cluster 3. Cluster-2–specific peaks are enriched in blood vessel
enhancers and heart enhancers. These results suggest that clusters
1 and 3 may be related to nervous system tissues and cluster 2
may be related to heart tissue.
Next, we analyzed cluster-specific genes from scRNA-seq data.

Fig. 4E presents the most enriched gene ontology (GO) terms,
their P values, and fold changes in each cluster. The results show
that cluster 2 is enriched in blood vessel development and car-
diovascular system development, while clusters 1 and 3 are
enriched in nervous system-associated terms. The results from
scRNA-seq–based annotation are consistent with the results from
scATAC-seq–based analysis. Although clusters 1 and 3 are ner-
vous system-associated clusters, there are interesting differences.
Cluster 1 is more enriched in axon guidance and neuron projec-
tion guidance, while cluster 3 is more enriched in brain develop-
ment and oligodendrocytes differentiation. It seems cluster 1 is
related to neuron-specific development and cluster 3 is more re-
lated to general nervous system development. Overall our results
suggest that the RA-induced stem cell at day 4 is a mixture of cells
related to neuron, cardiovascular system, and nervous system.
These results are largely consistent with previous studies (15, 16).
We can construct cluster-specific gene regulatory networks as

graphs with directed edges from the cluster-specific peaks to the
cluster-specific genes that are within 100 kb distance and di-
rected edges from cluster-specific TFs to cluster-specific peaks
containing significant matches to the corresponding motifs.
These cluster-specific subnetworks are presented in SI Appendix,
Fig. S8. It is seen that Klf7, Ebf1, Sox11, and Nhlh1 are playing
an important role in the network for cluster 1; Gata4, Gata6,
Sox17, Foxa2, Ap1 complex, and Tead family are important in
cluster 2; and Rarb, Nr2f1, Rfx4, Sox2, Sox9, Sox21, Pou3f2,
Pou3f3, and Pou3f4 are important in cluster 3.

Discussion
In this paper, we proposed a coupled clustering method and
applied it to single-cell genomic data. We emphasize that the
measurement of multiple data types in the same cell is techni-
cally challenging due to the complex cellular reactions. Our
method utilizes external information to integrate gene expres-
sion and chromatin accessibility that are not measured on the
same cell. In the simulation study, we showed that the coupled
NMF outperforms clustering results derived from just one data
type. Moreover, we showed that our method identifies important
peaks and genes that characterize cellular heterogeneity in the

A

C

RNA-seq CMP MEP

Cluster 1 59 36

Cluster 2 41 64

RNA-seq CMP MEP

Cluster 1 74 24

Cluster 2 26 76

RNA-seq CMP MEP

Cluster 1 5 93

Cluster 2 95 7

K-means (50 replicates)

NMF (50 replicates)

Coupled clustering

K-means NMF Coupled clustering

RNA-seq err 77 50 12
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Error rate 41.00% 18.75% 5.75%
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ATAC-seq CMP MEP

Cluster 1 1 14
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Fig. 2. (A) Clustering results of k-means, NMF, and our coupled clustering
on simulation scRNA-seq data of CMP and MEP. (B) Clustering results of k-
means, NMF, and our coupled clustering on simulation scATAC-seq data of
CMP and MEP. (C) Comparison of k-means, NMF, and coupled clustering on
simulation data of CMP and MEP.
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context of the RA-induced stem cell. The proposed method
enables a systematic mapping of peaks to genes, informative for
downstream analysis such as inferring gene regulatory networks
at the single-cell level.
As far as we know, coupled clustering is a problem different

from other complex clustering tasks such as biclustering or mul-
tiview clustering. Biclustering (17–19), also called block clustering
or coclustering, has been used widely to cluster subjects and
cluster genes simultaneously based on a p by n data matrix of
expression measurements on p genes for n subjects. The same data
matrix is used in the clustering in gene space as well as the clus-
tering in subject space. In contrast, two different data matrices are
used in coupled clustering of two separate samples. In multiview
clustering (20), the set of features measured on each subject can
be divided into two independent subsets; for example, one of them
may represent gene expression measurements while the other
represent accessibility measurements. The important difference
between multiview clustering and coupled clustering is that in the
former setting all features are measured on each subject, whereas

in the latter one only one of the subsets can be measured on any
subject. Clearly, coupled clustering is a more challenging task and
requires external information such as subject domain knowledge
or prior data to initialize the coupling.

Materials and Methods
Construction of Data Matrices. From scATAC-seq data, we compute a data
matrix O, where Oij denotes the degree of openness (i.e., read count) of the
ith region in the jth cell (6). By region we mean union of predefined REs and
peaks. From scRNA-seq data, we compute the data matrix E where Egh de-
notes the expression level of the gth gene in the hth cell (11). Details are
given in Materials and Methods, Data Processing. Note that the scATAC-seq
and the scRNA-seq data are not measured in the same cell (Fig. 1A).

Construction of Coupling Matrix. Our approach to the contraction of A is to
look for a subset of genes whose expression is highly predictable from chromatin
accessibility of REs. To do this, we take advantage of our recent work on modeling
paired gene expression and chromatin accessibility data (on bulk samples) across
diverse cellular contexts (7). From the paired expression and chromatin accessibility
(PECA) model in that work, for each gene g, we can extract a set Sg of REs that
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RNA C1 7.1E-23 (4.07) 0.3693(0.82) 0.6532(1.10)

RNA C2 0.2974(0.90) 9.1E-102 (2.30) 0.5468(1.04)

RNA C3 0.0042(1.39) 0.2538 4.1E-24 (2.01)
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Fig. 3. (A) t-SNE plot of scRNA-seq data (Right) and scATAC-seq data (Left) from RA day 4. Different colors represent clustering assignment from the coupled-
clustering method. (B) Same t-SNE plots as in A. Different colors represent cluster-specific TFs’ (Ebf1, Gata4, and Rfx4) gene expression Z score and motif
activity Z score. (C) Comparison of cluster-specific TFs’ expression Z score with motif activity Z score at the cluster level. (D) Overlap of cluster-specific peaks
nearby genes with cluster-specific genes. The values represent Fisher’s exact test P value and fold change.

7726 | www.pnas.org/cgi/doi/10.1073/pnas.1805681115 Duren et al.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 2
4.

13
0.

12
0.

21
4 

on
 O

ct
ob

er
 7

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
24

.1
30

.1
20

.2
14

.

www.pnas.org/cgi/doi/10.1073/pnas.1805681115


regulate that gene. We consider the regression model of target gene (TG)
expression (denoted as Eg) on its REs’ accessibility (denoted as Oi):

Eg = αg0 +
X

i∈Sg
αgiOi . [2]

We estimate the parameter αg by fitting the penalized least-squares problem
(Eq. 3) based on expression and accessibility data on a diverse panel of cell
lines [56 cell lines in the case of mouse and 148 cell lines in the case of human
(Dataset S1)],

minαg  
1
2

���Eg−αg0−Xi∈Sg
αgiOi

���2
F
+ δ

���αg��1+��αg��22
�
, [3]

where δ is determined by fivefold cross-validation. After fitting the model,
we select a set of well-predicted genes for which regression R2 is greater
than 0.8. In this way, we selected 5,966 well-predicted genes in mouse and
selected 6,253 well-predicted genes in human. In coupling matrix A = (αgi),

only the rows corresponding to the selected genes are nonzero.

Optimization Algorithm. We optimize the object function in Eq. 1 by a
multiplicative update algorithm,

w1
ij ←w1

ij  

�
OHT

1 +
λ2
2A

TgW2

�
ij�

W1H1HT
1 + 2μW1

�
ij

w2
ij ←w2

ij  

�
XHT

2 +
λ2
2λ1

AW1

�
ij�

W2H2HT
2 + 2μW2

�
ij

h1
ij ←h1

ij  

�
WT

1 O
�
ij�

WT
1 W1H1

�
ij

h2
ij ←h2

ij  

�
WT

2 E
�
ij�

WT
2 W2H2

�
ij

,

wherew1
ij represents the element of the ith row and the jth column in matrix

W1, and the same representation is used in W2, H1, and H2. We stop the
iteration when the relative error is less than 0.0001.

Cluster-Specific Features.We apply a t test to define the cluster-specific genes
and cluster-specific peaks, and the default P-value cutoff is 0.0001.

Evaluation of the Clustering Results. We evaluate the results in terms of con-
sistency of true expression values and the predicted values. We calculated the
K ×K correlation matrix of AW1 with W2, which is denoted by R. We use the
determinant of correlation matrix R to measure the consistency of true ex-
pression values with the predicted values. Higher determinant means higher
diagonal of the matrix, which means higher correlation between matched
clusters and lower correlation between unmatched clusters. When K = 1, the
determinant simply reflects the correlation between true gene expression and
predicted gene expression. When K > 1, the determinant will integrate in-
formation from both within-cluster correlations and between-cluster correla-
tions. For example, suppose there are three true clusters in the population but
in our clustering result one of the true clusters is randomly split into two
subclusters. In this situation, the clustering result has four clusters and all four
within-cluster correlations will be high; however, the determinant will be close
to zero because the correlation vectors due to the two subclusters will be
highly colinear. Thus, the use of the determinant instead of the product of
within-cluster correlations will offer protection against overpartitioning.

Parameter Selection. We solve optimization problems min
W1 ,  H1≥0

kO−W1H1k2F ,
min

W2 ,  H2≥0
kE−W2H2k2F by the alternating least-squares (ALS) algorithm with 50

different initializations using a Monte Carlo-type approach (21) and get the
solutions W10,  H10,W20,  H20, which are used as initial solutions in our op-

timization problem. We choose parameter μ= kO−W10H10k2F=ðkW10k2F +
kW20k2FÞ. Tuning parameters λ1 and λ2 are chosen from 0.001, 0.01, 0.1, 1, 10,
100, 1,000, and 10,000. The determinant of correlation matrix R can be used
to select the tuning parameters. We choose the tuning parameters which
give the highest determinant (SI Appendix, Fig. S9). The number of clusters K
can be determined by a method similar to that in ref. 13.

D

E

Cluster 1 facial prominence forebrain midbrain hindbrain neural tube heart intes�ne kidney limb liver lung stomach
E11.5 9.29 5.67 13.82 8.87 13.48 7.25 NA NA 7.62 6.87 NA NA
E12.5 11.02 24.10 20.59 15.79 9.53 6.55 NA NA 11.68 14.91 NA NA
E13.5 8.45 25.25 21.73 16.89 19.76 9.92 NA NA 5.70 12.54 NA NA
E14.5 8.35 11.75 12.19 14.74 8.70 5.12 4.59 3.99 8.12 13.15 5.95 4.63 
E15.5 13.43 17.85 14.90 15.84 16.25 10.93 10.91 8.89 17.02 14.51 8.01 10.02 
E16.5 NA 19.03 11.93 12.91 NA 10.92 9.52 7.37 NA 11.57 9.21 7.20 

P0 NA 8.00 5.91 6.85 NA 5.92 3.58 5.44 NA 8.86 5.54 8.08 

Cluster 2 facial prominence forebrain midbrain hindbrain neural tube heart intes�ne kidney limb liver lung stomach
E11.5 5.65 4.01 7.58 2.95 3.41 18.27 NA NA 4.36 13.29 NA NA
E12.5 4.88 9.68 9.01 8.08 3.46 12.43 NA NA 9.03 17.47 NA NA
E13.5 6.83 4.92 16.07 14.36 14.45 20.23 NA NA 5.89 16.94 NA NA
E14.5 6.67 4.12 7.90 6.18 4.18 19.26 11.93 5.17 6.63 16.41 9.31 6.89 
E15.5 12.97 11.90 13.40 12.38 11.68 21.25 10.30 21.45 11.15 12.14 17.62 12.89 
E16.5 NA 11.47 10.89 11.88 NA 22.52 18.14 14.38 NA 14.87 17.32 17.04 

P0 NA 5.58 5.44 7.55 NA 15.93 4.95 6.71 NA 8.71 11.06 18.27 

Cluster 3 facial prominence forebrain midbrain hindbrain neural tube heart intes�ne kidney limb liver lung stomach
E11.5 8.23 20.05 20.44 14.82 15.18 7.69 NA NA 2.73 1.78 NA NA
E12.5 13.87 28.56 25.45 18.64 12.64 9.33 NA NA 13.37 4.10 NA NA
E13.5 14.50 30.76 26.94 17.08 24.07 9.21 NA NA 14.25 4.95 NA NA
E14.5 16.34 31.51 21.42 18.97 12.02 8.41 4.47 5.27 14.33 4.45 3.62 6.79 
E15.5 14.68 31.78 24.58 21.83 19.95 11.95 2.75 9.09 15.04 3.95 7.64 4.93 
E16.5 NA 32.39 19.15 25.47 NA 7.89 5.42 9.00 NA 4.09 6.09 2.26 

P0 NA 12.52 5.31 6.12 NA 2.37 0.00 1.62 NA 2.40 3.62 0.89 
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Fig. 4. (A–C) Similarity of cluster-specific peaks with
enhancers of 12 tissues’ seven developmental stages.
The numbers represent 10,000× Jaccard index and
NA indicates enhancer data of that tissue in that
stage are not available. (D) Percentage of VISTA en-
hancer that overlapped with cluster-specific peaks.
(E) GO enrichment of cluster-specific genes.
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TF Motif Activity. We use the software chromVAR (22) to calculate the TF
motif activity on each single cell based on its scATAC-seq data.

Single-Cell Sample at RA Day 4. We generated a heterogeneous biological
population of cells that arise from the same origin. Specifically, we used the
hanging-drop technique to form embryonic bodies (EBs) frommouse embryonic
stem cells (mESCs) and induced differentiation by RA treatment. After 4 d of
induction,we sample cells for bulk RNA-seq andbulkATACC-seqexperiments for
use in validating the coupling. To test the coupled-NMF clustering method, we
also generated scATAC-seq and scRNA-seq on the RA day-4 population. After
removing low read-count cells (3,000 in RNA-seqand10,000 inATAC-seq),weget
ATAC-seq data and RNA-seq data on 415 and 463 single cells, respectively.

Data Processing. We align the scATAC-seq reads to reference genome mm9
and remove duplicates. We employed MACS2 (23) to do peak calling by
merging all of the reads from all of the single cells. We consider only the
narrow peaks which are at least present (one or more reads) on 10 cells.
Read counts for each region on each cell are calculated by bedtools (24) with
the intersect command. Features defined from scATAC-seq data consist of an
openness index on regions including REs and narrow peaks from MACS2. REs
include promoters and enhancers. We use REs that regulate at least one TG
from the PECA network (7).

scRNA-seq raw reads are mapped to mm10 by STAR (25) with ENCODE
options. Gene expression TPM are calculated by RSEM (26). The tran-
scriptome annotation we use is GENCODE vM16.

Simulation of scRNA-Seq and scATAC-Seq. We simulate scRNA-seq data for
each single cell from bulk RNA-seq data by following the Splatter pipeline
(27). Specifically, it includes three steps: (i) adding noise on expression data
T, T = TPM+ «, where « is Gaussian noise with SNR = 5; (ii) getting expected
read counts per gene λi =NTiLi=

P
iTiLiP × 0.5%, where N is the total number

of read counts in bulk data, Li and Ti are gene length and its expression for
gene i, and P reflects the sequencing depth for each single cell P ∼Betað2,4Þ;
and (iii) getting the observed read counts for each gene, Yi =DiXi , where

read count Xi ∼ PoiðλiÞ, and dropout effect Di ∼Berð1=1+ λ−0.1i Þ. In scATAC-
seq simulation, we use the same procedure by replacing the TPM as open-
ness (defined as number of read counts per 1,000 bp per 100 million mapped
reads). The distribution of read counts in our simulation data is similar to the
distribution of reads counts in 10× genomics scRNA-seq data and C1 Fluid-
igm scATAC-seq data.

Experimental Design of RA-Induced mESC Differentiation. mESC lines R1 were
obtained from ATCC. The mESCs were first expanded on a mouse embryonic
fibroblasts feeder layer previously irradiated. Then, subculturing was carried
out on 0.1% bovine gelatin-coated tissue culture plates. Cells were propa-
gated in mESC medium consisting of Knockout DMEM supplemented with

15% Knockout Serum Replacement, 100 μMnonessential amino acids, 0.5 mM
beta-mercaptoethanol, 2 mMGlutaMax, and 100 units/mL penicillin–streptomycin
with the addition of 1,000 units/mL leukemia inhibitory factor (ESGRO; Millipore).

mESCs were differentiated using the hanging-drop method (28). Trypsi-
nized cells were suspended in differentiation medium (mESC medium
without LIF) to a concentration of 50,000 cells/mL. Twenty-microliter drops
(∼1,000 cells) were then placed on the lid of a bacterial plate and the lid was
placed upside down. After 48 h incubation, EBs formed at the bottom of the
drops were collected and placed in the well of a six-well ultralow attach-
ment plate with fresh differentiation medium containing 0.5 μM RA for up
to 4 d, with the medium being changed daily.

scATAC-Seq. We followed the scATAC-seq protocol published by Buenrostro
et al. (2) with the following modifications. The EBs were first incubated with
StemPro Accutase cell dissociation reagent (Gibco) at 37 °C for 10 min, and
then the EBs were gently pipetted for an additional 15 min to obtain a
single-cell suspension. To further remove nondissociated EBs, the cell sus-
pension was filtered sequentially with a 40-μM cell strainer (BD Falcon) and a
20-μM pluriStrainer (pluriSelect). After washing three times with C1 DNA Seq
Cell Wash Buffer, cells at a concentration of 350–400 cells/μL were loaded on
the C1 Single-Cell Auto Prep System (Fluidigm, Inc.). Single cells were cap-
tured and processed on a 10- to 17-μM IFC microfluidic chip using ATAC-seq
scripts (2). A total of seven IFC chips were included in this study. The library
was sequenced on Illumina NextSeq with 75-bp paired-end reads.

scRNA-Seq. To prepare a scRNA-seq library, we followed the SMART-Seq v4
Ultra Low Input RNA Kit for the Fluidigm C1 System (Clontech Laboratories,
Inc.). The EBs were first dissociated with Accutase as described previously. Cells
at a concentration of 200–250 cells/μL were then loaded on the C1 Single-Cell
Auto Prep System (Fluidigm, Inc.). The single cells were captured and processed
on a 10- to 17-μM IFC microfluidic chip, using SMART-Seq v4 scripts. A total of
five IFC chips were included in this study. After harvest, cDNA concentration
for each sample was measured using the Fragment Analyzer Automated CE
System (Advanced Analytical Technologies, Inc.) and the cDNA concentration
we used for Nextera XT library preparation is ∼0.2 ng/μL. The library was se-
quenced on Illumina HiSeq with 100-bp paired-end reads.

Software and Data. Software and simulation data are available at http://web.
stanford.edu/∼zduren/CoupledNMF/. Single-cell gene expression data and
chromatin accessibility data of RA induction have been deposited in the GEO
database under accession nos. GSE115968 and GSE115970.
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