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ABSTRACT

The relationship between genetic variation and human phenotypes is crucial for developing effective treatments and personalized
medicine. However, our understanding of the regulatory mechanisms by which variants influence human traits and diseases is far
from complete. Context-specific regulatory network is a typical tool that provides detailed understanding of gene regulation in
specific biological contexts, allowing us to identify key regulators and pathways that are important for a particular phenotype. In this
review, we summarize the large international biobanks and reference omics data that provide diverse datasets for the genotype-
phenotype analysis and the construction of context-specific regulatory networks, and discuss the importance of context-specific
regulatory networks in explaining the underlying causal mechanism between genotypes and phenotypes. We emphasize the
significance of QTL studies in explaining the correlation between genotypes and omics features, and present various
computational approaches for the construction of context-specific regulatory networks. With continued advancements in
biobanking, genomics, and computational biology, the context-specific regulatory networks may serve as an increasingly powerful

tool for modeling the causal mechanisms that underlie the relationship between genotypes and phenotypes.
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including single nucleotide polymorphisms (SNPs),

insertions, deletions, and copy number variations™ > .
While many of these variants are benign and do not have any
significant impact on phenotypes, some variants can have
functional effects on genes, proteins, and other molecular factors,
which can in turn influence phenotypes and disease risk 7.
Exploring the causal mechanism of the phenotypic variants is
crucial for the interpretation of the molecular basis of complex
diseases and traits”, as well as for the development of effective
therapies and personalized medicine® ™ . However, our
understanding of the regulatory mechanisms by which variants
influence human traits and diseases is far from complete.

With the development of sequencing technologies and the
accumulation of various omics data’ "', regulatory networks
built based on multiple omics data have become an increasingly
important tool for understanding the molecular mechanisms
between genotypes and phenotypes'™ * . General regulatory
networks describe interactions in a generic way across all contexts,
however, the mechanisms underlying the biological processes are
highly dynamic and can vary across different biological contexts,
such as different tissues, developmental stages, or disease states"".
Thus, there is a need for context-specific regulatory networks that
describe the interactions between molecules involved in a
particular tissue, cell line, or cellular state. Context-specific

T here are millions of genetic variants in the human genome,

regulatory networks provide a more accurate and detailed
understanding of gene regulation in specific biological contexts,
and can help to identify key regulators and pathways that are
specifically important in that context".

Context-specific regulatory networks interpret the underlying
mechanism between genotypes and phenotypes by identifying the
specific regulatory interactions that link genetic variation to
phenotypic variation™. For example, a context-specific regulatory
network can identify key regulatory nodes or hubs that are
responsible for regulating the expression of multiple downstream
genes and proteins™ . Then, by analyzing the connectivity
patterns within the regulatory network, we can identify genetic
variants that affect the activity of these regulatory nodes and
ultimately lead to changes in gene expression and the phenotype
of interest™. Besides, context-specific regulatory networks can be
used to identify signaling pathways and other functional modules
that are responsible for a particular biological response or
phenotype*.

One of the main challenges and limitations of using context-
specific regulatory networks to interpret the underlying
mechanism between genotype and phenotype is the requirement
for large and diverse omics datasets'”. The accuracy and reliability
of context-specific regulatory networks depend on the availability
of high-quality data, including genome-wide association studies
(GWAS) data™, gene expression data™, chromatin accessibility
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data™ >, protein profiling™, and other relevant omics data™’. The
most widely used context-specific regulatory network is the gene
co-expression network, where the edges are interactions between
co-expressed genes predicted using gene expression data™ . In
addition, other omics data, such as chromatin accessibility,
DNA methylation, histone modification data, and 3D chromatin
interactions can also be wused to identify regulatory
relationships™ * ** ¥ For example, ChIP-seq can be used to
identify the genomic binding sites of TFs and other chromatin-
associated proteins. By integrating ChIP-seq data with gene
expression data, it is possible to infer the regulatory relationships
between TFs and their target genes™.

There have been lots of genomics and omics data released for
research use, including a series of biobanks providing genotypic
and phenotypic data™, thousands of summary statistics of
GWASs"), various omics datal3, and other abundant biological
resources™ . Fig. 1 shows the biological process from genotype
to phenotype involving different layers of omics data, which are
typically generated in a context-specific manner. In Fig. 2, we
emphasize the difference between i) personal data such as genome
sequence and clinical information, which are expected to be
generated in routine healthcare or in population-level biobanks,
and ii) reference data such gene expression and chromatin
accessibility profiles. These reference data are typically context-
dependent and not expected to be available on the same scale as
the personal data, but they can be used to construct reference
models to support the interpretation of the personal data. By
integrating different types of omics data and simulating the effects
of genetic variants, we can gain a more comprehensive
understanding of the underlying regulatory mechanisms between
genotypes and phenotypes and can have the opportunity to
develop new strategies for drug development and genetic
engineering™’.

This review discusses the importance of context-specific
regulatory networks in explaining the underlying mechanism
from genotypes to phenotypes. First, we review the state-of-the-art
biobanks that provides abundant genotype and phenotype data
for the development of GWAS analysis to capture the links
between genotypes and phenotypes. Then, we highlight the value
of reference omics data in the construction of context-specific
regulatory networks and emphasize the significance of QTL
(Quantitative Trait Locus) studies in identifying the correlation

between genotypes and omics features. Moreover, we present
various computational approaches for the construction of context-
specific regulatory networks and show that the networks can be
applied in modeling the causal mechanism between genotypes
and phenotypes, providing insight into disease, and suggesting
potential targets for therapeutic interventions. We also outline the
challenges and opportunities that lie ahead, including the demand
for more comprehensive and diverse datasets, the need of more
reliable approaches for data integration and network construction,
and the difficulty of network interpretation. Overall, we believe
that the continued advancements in biobanking, genomics, and
computational biology will lead to a better application of context-
specific regulatory networks in modeling the causal mechanism
between genotypes and phenotypes and pave the way for
personalized medicine.

1 Population-level biobanks provide genotype
and phenotype data

Population-level biobanks are large research resources of
biological samples and associated data that typically include
genotype data from thousands or even millions of individuals, as
well as their various phenotypes™ *. The genotype data provided
by biobanks typically consist of information about an individual’s
genetic makeup, including variants in specific genetic markers or
throughout the whole genome. The phenotype data include
information about an individual’s observable traits, such as height,
weight, blood pressure, and medical histories, as well as
information about their living environment, such as exposure to
pollutants or lifestyle factors.

There are two common techniques to generate genotype data,
one is microarray genotyping” and the other is whole-genome
sequencing (WGS)"\. Microarray uses a chip with thousands or
even millions of DNA probes that bind to specific regions of the
genome and determines the genotype at each location by
measuring the intensity of the signal from the probes™.
Microarray genotyping is a high-throughput and cost-effective
method widely used to generate genotypes for large numbers of
genetic markers simultaneously. However, the coverage and
resolution of microarray is limited by the number and density of
probes on the chip, which may miss important genetic variants
and make it difficult to detect large structural variations, such as
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Fig.1 Ilustration of the biological process from genotype to phenotype, involving the central dogma that covers different layers of omics, which typically

happens within a cell.
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Fig.2 A simplified diagram that shows the understanding of how personal genotypes (A) affect personal phenotypes (B) will require the modeling of the
relationship between different layers of omics based on non-personal reference data, which are usually generated in a context-specific manner (C).

copy number variants (CNVs) and translocations™.

WGS is a more comprehensive method than microarray for
generating genotype information, as it sequences the entire
genome of an individual, rather than targeting specific regions
with probes™’. WGS technique has become increasingly important
in the field of genomics because it 1) enables the identification of
both common and rare variants, 2) can provide important insights
into the biological mechanisms that underlying the development
of diseases, and 3) can be used to identify individuals who may be
at increased risk of developing certain diseases and to develop
personalized treatment plans for individuals, as well as help
explore the most effective drugs or therapies for specific diseases.
By analyzing genetic variants and their impact on gene expression
and protein function, we can gain a better understanding of how
diseases develop and progress. Overall, whole-genome sequencing
data provides a wealth of information that can help advance our
understanding of human genetics and biology, and has the
potential to revolutionize personalized medicine and disease
prevention.

While genomics focuses on the study of genetic variation at the
DNA level, phenomics examines the development, physiology,
and behavior of an organism. Phenotype data can be broadly
classified into several categories based on their characteristics and
properties. Some of the main classes of phenotypes include
morphological phenotypes, biochemical phenotypes, physiological
phenotypes, behavioral phenotypes, and clinical phenotypes”.
Morphological phenotypes are physical traits that can be observed
and measured, such as height, weight, and body mass index
(BMI). Biochemical phenotypes are phenotypes that are related to
the chemical composition and metabolic processes of the body,
such as blood glucose levels and cholesterol levels. Physiological
phenotypes usually reflect the function of different physiological
systems in the body, such as blood pressure and heart rate.
Behavioral phenotypes are related to an individual’s behavior,
such as sleep patterns, diet, and exercise habits. Clinical
phenotypes refer to disease or other medical conditions, such as
diagnosis codes, medication use, and hospitalization records.

There are several techniques that can be used to generate
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phenotype data. One of the most typical techniques is the clinical
examination, which involves physical and diagnostic examinations
conducted to assess an individual’s health status. The digital
records of an individual’s medical history, including diagnoses,
medication use, and other clinical data, can be collected into
electronic health records (EHRs) to serve as standardized
phenotypes™. Another common way to generate phenotype data
is through questionnaires and surveys, which are self-reported
measures that capture information on an individual’s behavior,
lifestyle, and other exposures. In recent years, wearable devices
have become a new technique to collect detailed phenotypes of
individuals by monitoring the physiological or behavioral
parameters, such as heart rate, activity levels, and sleep patterns.
Owing to the widespread adoption of EHRs and advancements
in experimental and computational platforms for cost-effective
population-scale sequencing and analysis, large-scale biobanks
have emerged as a crucial resource for accelerating biomedical
researches. Biobank data typically include genomic and
phenotypic data from thousands to millions of individuals, and
often includes data from individuals with diverse genetic and
environmental backgrounds, allowing for analysis of genetic and
environmental factors that contribute to the development of
disease and other phenotypes. Table 1 provides a brief overview of
the state-of-the-art biobanks developed by different countries and
organizations. One of the most advanced biobanks is the UK
Biobank (UKBB)®, which is a prospective cohort study that
recruited half a million individuals aged 40-69 years old across the
United Kingdom between 2006 and 2010. UKBB is a large-scale
biomedical resource that integrates genome-wide genetic data
with extensive phenotype data, including data from lifestyle
questionnaires, physical measures, biomarkers in blood and urine,
accelerometry, multimodal imaging and other sources (Table 2).
The UKBB cohort is unprecedented in size, and the extensive
phenotyping and genome-wide genotype data, supplemented with
high-density imputation, have enhanced power for genetic
discovery and enable well-powered GWASs of hundreds of
quantitative traits, including anthropometric traits, blood traits,
cognitive traits, and numerous blood and urine biomarkers. The
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Table1 Summary of state-of-the-art biobanks proposed by organizations from different countries.

. Number of
Biobank Name Country  Year Individuals Research Focus Homepage
UK Biobank'” UK 2006  >500,000 Wide range of health conditions https://www.ukbiobank.ac.uk/
FinnGen'"’ Finland 2017  ~500, 000 Genetic factors of diseases https://www.finngen.fi/en
China Kadoorie Biobank™” China 2004 >512,000 Chronic diseases https://www.ckbiobank.org
BioBank Japan®'! Japan 2003 >200, 000 Precision medicine https://biobankjp.org/
Biobank Graz® Austria 2008 >1,200, 000 Metabolic diseases https://biobank.medunigraz.at/
LifeGene®! Sweden 2007  >50, 000 Environmental and genetic https://www lifegene.se/en/
factors on health
Estonian Biobank"" Estonia 2000  >200, 000 Genetic factors of diseases htp s://genom'l cs.utl.ee/en/content/
estonian-biobank
Health iti lent i
Qatar Biobank™ Qatar 2016 >30, 000 calt condgl;)tr:; prevalentin https://www.qatarbiobank.org.qa/
https://www.cancer.gov/about-
The Cancer Genome Atlas" USA 2006  >11,000 Cancer genomics nci/organization/ccg/research/
structural-genomics/tcga
The National Cancer Institute’s
) i https: . .
Genomic Data Commons'*’ USA 2016  >86, 500 Cancer genomics ttps://gdc.cancer.gov/
CanPath" Canada 2008  >330, 000 Environmental and lifestyle https://www.partnershipfortomorrow.ca/
factors on health
Saudi Human Genome Program"  Saudi Arabia 2013  >100, 000 Genetic factors of diseases https://shep.kacst.edu.sa/en/Pages/
default.aspx
deCODE Genetics' Iceland 1996  >250, 000 Genetic risk factors https://www.decode.com/
https://ge ics.ut. tent
Estonian Biobank''! Estonia 2000  >200, 000 Medical science ps //5&.[1()111'1 e ,ee/en/con ent/
estonian-biobank
Korean Genome and South Korea 2001  >10, 000 Genetic and environmental http://www.koGES.rekr/eng/
Epidemiology Study*” factors of diseases
The International Agency for Research France 1972 >562, 000 Disease biomarkers https://ibb.iarc.fr/

on Cancer (IARC) Biobank (IBB)"

access infrastructure provided with the UKBB study has made it
one of the most valuable human genetics bioresources ever
generated.

2 GWAS captures the links between genotypes
and phenotypes

GWAS captures the links between genotypes and phenotypes by
examining the statistical correlation between the phenotype of
interest and millions of SNPs across the entire genome of a large
number of individuals™. GWAS has been widely used to identify
phenotypic variants that are associated with a broad range of
human phenotypes, including complex diseases, traits, and drug
response”’. The basic steps of GWAS include selecting a large
sample of individuals with and without a particular phenotype,
genotyping these individuals using high-throughput genotyping
technologies, and then analyzing the genotype data to identify
SNPs that are significantly associated with the given phenotype".
The statistical significance of the associations is usually assessed
using a genome-wide significance threshold to account for
multiple testing”. This process is illustrated in Fig. 2: “case-
control”.

GWAS has led to the identification of thousands of genetic
variants that are associated with various human phenotypes,
providing insights into the biological mechanisms underlying
complex diseases and traits*. The availability of genome-wide
genotype data collected from all UKBB participants, together with
the biobank’s vast amount of phenotype data, have generated a
singular resource of considerable size that provides opportunities
for the discovery of new genetic associations and the genetic basis
of complex traits and diseases.

Although GWAS can capture the statistical correlation between
genotypes and phenotypes, it cannot provide much insight into
the mechanisms by which these SNPs affect the phenotypes. To

4

unravel the mechanisms underlying these associations, integrating
GWAS results with omics data such as epigenomics,
transcriptomics, and proteomics is necessary’. Epigenetic
modifications, such as DNA methylation and histone
modifications, can affect gene expression and potentially mediate
the effects of genetic variants on phenotype'. Transcriptomics
involves the study of gene expression, which can provide
information about which genes are differentially expressed in
individuals with the phenotype of interest’. Proteomic data can
complement GWAS by providing additional information on the
functional consequences of genetic variation”. In general, the
integration of various omics data with GWAS data can help
identify the regulatory elements that are affected by genetic
variants and make it possible for us to explore the functioning
pathways of genetic variants that modulate complex traits and
diseases.

3 Omics data for the construction of context-
specific regulatory networks

With the advancement of next-generation sequencing
technologies, it has become increasingly feasible to generate large-
scale genomic data from individuals. Germline genotypes and
phenotypes information in health records are expected to become
available for most individuals with access to good healthcare
systems”. However, to clarify their relationship, we will need to
construct models to connect the different omics layers in Fig. 1.
The construction of these models is typically based on reference
data, which refers to genomic data and omics data that has been
generated from large population cohorts and serves as a reference
for comparison with personal genomic data. Reference omics data
can be used to identify genetic variants that are common or rare
in the population, and to annotate functional elements in the
genome such as regulatory regions, protein-coding genes, and non-
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Table2 Data overview of UK Biobank.

Number of Number of

Detail .
phenotypes Participants

Data Type

Questionnaire and interview

Includes ethnicity, education, employment, household information, Townsend deprivation

Sociodemographic data index 29 ~500, 000
Familv historv and earl Includes illnesses of fathermothersiblings, age of parents, age parents died, number of siblings,
Y i fey Y birthplace, birth weight, breastfed, childhood body size and height, maternal smoking, 28 ~500, 000
handedness, adopted, and part of multiple birth
Psychosocial factors Includes social support, bipolarmajor depression, anxiety, nerves, psychological traits, and mood 48 ~500, 000
Lifestyle Incl'udes information of smoking, alcohol consumption, physical activity, diet, sleep, electronic 155 500, 000
device use, sun exposure, and sexual factors
Medical history Incll‘ldes medi.cal conditions, medications, operations, cancer screening, pain, oral health, 102 500, 000
eyesight, hearing, and general health
Cognitive function Includes prospective memory, pairs matching, fluid intelligence, reaction time, and numeric 121 500, 000
memory
Physical measures
Blood pressure Includes two blood pressure measures taken 1 min apart using a digital blood pressure monitor 10 ~500, 000
Hand grip strength Includes right and left hand isometric grip strength 5 ~500, 000
Anthropometrics Include.s s.tanding/ sitting height, waist/hip circumference, weight body mass index, and whole 59 500, 000
body bio-impedance measures
Spirometry Includes two to three blows measurement within a 6 min period 37 ~500, 000
Heel bone density Includes ultrasound measurement of the heel 41 ~500, 000
Arterial stiffness Includes pulse wave velocity using infra-red sensor at the finger 14 ~200, 000
Hearing test Includes reaction on speech-in-noise 31 ~200, 000
Eye measures Inc.ludes eye surgery complications, visual acuity, autorefraction, intraocular pressure, and 333 100, 000
retinal coherence tomography
Cardiorespiratory fitness  Includes heart rate monitoring results using a four-lead electrocardiograph during cycle 45 100. 000
plus ECG ergometry on a stationary bike ’
Web-based questionnaires
Diet Includes information on consumption of over 200 food and drink items over the last 24 hour 473 ~210, 000
Includes a series of cognitive tests, of which four were repeated from the baseline assessment
Cognitive function (fluid intelligence, reaction time, numeric memory, pairs test) in addition to two further tests 56 ~120, 000
(trail making, symbol digit substitution)
Incl inf¢ i lifeti 1 hi , ional 1
Occupational history nc L.lded' in orma.t1on on lifetime employment history, occupational exposures and related 100 120,000
medical information
Included information on lifetime mental health events (including depression, bipolar affective
Mental health disorder, and generalized anxiety disorder), alcohol and cannabis use, unusual and psychotic 142 ~150, 000
experiences, traumatic events, self-harm behaviours and subjective wellbeing
Enhancement
Physical activity monitor Includes results from Axivity AX3 tri-axial wrist accelerometer for a 7-day period 210 ~100, 000
Includes thirty-four biomarkers using the plasma, serum, red blood cells, and urine samples.
Bi 1 h lished risk f: for di .g. sex h
Biochemical measures iomarkers are se ecFed because they are establis! efi risk factors for disease (e.g. sex ormones 978 500, 000
for cancer), diagnostic measures (e.g. HbA1C for diabetes) or they are used to characterize
phenotypes (e.g. cystatin C and creatinine for renal function).
Includes SNP array results covers X800 000 SNPs and indel markers covering markers of
. specific interest, rare coding variants and genome-wide coverage. Seventy-three million SNPs,
Genot 271 ~500, 000
enotyping short indels, and large structural variants have been imputed. WGS are still ongoing but will be
released soon
Multi-modal imaging InCll}dFS MRI of brain, heart and body, carotid ultrasound and whole body DXA scan of bones 2691 100, 000
and joints
Electronic medical records
ICD-10 coded national death registry data obtained from the Health and Social Care
. Information Centre (now NHS Digital) for England and Wales and the Information Services
Death registry L . 8 ~14, 000
Department (ISD) for Scotland. Contains information on source of death report, date, age and
cause(s) of death
ICD-9 and -10 coded national cancer registry data obtained from HSCIC for England and Wales
Cancer registry and the ISD for Scotland. Contains information on source of cancer report, date and age at 9 ~79, 000
diagnosis, site, histology, and behaviour of the cancer.
ICD-9 and -10 coded hospital inpatient episodes obtained from the Hospital Episode Statistics
provider for England, the Patient Episode Data for Wales and the Scottish Morbidity Records for
Hospital inpatient data ~ Scotland. Contains information on admission and discharge, operations, diagnoses, maternity 80 ~400, 000
care, and psychiatric care. Main and secondary diagnoses/operations as well as date of
diagnosis/operation are included.
Primary care data Contain coded data from primary care records, including diagnoses, prescriptions, referrals etc. 3 pending
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coding RNAs.

The biological process illustrated in Fig. 1 typically happens
within a single cell, which may belong to a specific cell line, tissue,
or organ (Fig. 2C). Thus, the different layers of omics data
processed in the cell are context-specific. The context-specific
regulatory network is a common bridge used to link genotypes to
phenotypes, which is typically constructed based on public
reference data to provide a wealth of information on the omics
molecules and their interactions. Advancements in high-
throughput omics technologies have led to an explosion of
reference data™®®.. In the past decade, multiple levels of omics
data—including whole-genome DNA sequencing data, DNA
methylation, chromatin accessibility, histone modifications, the
binding of transcription factors, chromatin interactions, RNA
expression levels, and proteomics—have been generated to
explore biological regulatory process and model the mechanism
between genotypes and phenotypes® *.. The resources of these
omics data have been collected by organized projects such as the
Encylopedia of DNA Elements (ENCODE) project"’, the
Genotype-Tissue Expression (GTEx) project"’, ROADMAP
epigenomics project™, and so on. Here is a brief introduction for
several of the most commonly used projects.

ENCODE project’: The ENCODE project is a collaborative
effort involving hundreds of studies from around the world to
identify and annotate all functional elements in the human
genome. ENCODE delivers 9, 239 experiments (7, 495 in human
and 1, 744 in mouse) in more than 500 cell types and tissues™,
including mapping of transcribed regions and transcript isoforms,
regions with transcription factor binding or histone modifications,
open chromatin elements, 3D chromatin interactions and other
functional annotation. These data are publicly available at the
ENCODE portal (http://www.encodeproject.org) and have been
widely used to study the function and regulation of the human
genome.

GTEx project™: GTEx studies the relationship between genetic
variation and gene expression across multiple human tissues.
GTEx has generated gene expression data for 54 non-diseased
tissue sites across nearly 1, 000 individuals, as well as genomic data
on more than 840, 000 genetic variants, primarily for molecular
assays including WGS, WES, and RNA-Seq. The latest version of
GTEx provides the genotypes of 838 donors and the expression
levels of 17, 382 samples in 52 tissues and two cell lines. The
project has also developed a number of tools and resources for
analyzing and visualizing the data, including an online portal that
allows us to explore gene expression patterns across different
tissues and genetic backgrounds. All resources can be found at
https://gtexportal.org/home/.

ROADMAP epigenomics project®: The NIH Roadmap
Epigenomics Mapping Consortium produces a public resource of
human epigenomic data to catalyze basic biology and disease-
oriented research. The project has generated high-quality, genome-
wide maps of several key histone modifications, chromatin
accessibility, DNA methylation and mRNA expression across over
100 human cell types and tissues, providing uniformly processed
datasets, integrative analysis products and interactive genome
browser sessions. The processed data are available at https://
egg2.wustl.edu/roadmap/web_portal/processed_data.html.

Besides the above projects that focus on bulk-level data, recent
advancements in single-cell technologies have revolutionized our
ability to dissect the complex tissues with single-cell resolution.
The Human Cell Atlas (HCA)® is an international collaborative
consortium that charts the cell types in the healthy body. It aims
to create comprehensive reference maps of all human cells as a
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basis for identifying the common cell types in tissues from the
major human organs and understanding human health and
diseases. So far, HCA scientists have identified more than 39
million cells from 15 major organ systems, such as 11.1 million
nervous system cells, 5.8 million embryonic and fetal cells, 3.4
million lung cells, and 7.2 million immune cells. These atlases also
include important human diseases, such as nearly 4.8 million cells
derived from individuals infected with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). The processed data are
available at https://www.humancellatlas.org. The Human
BioMolecular Atlas Program (HuBMAP)™ is another public
database that provides a comprehensive map of the human body
at the cellular and molecular level. The database contains data
from various sources, including imaging data, genomic data, and
clinical data. The goal of the database is to provide a
comprehensive view of the human body, which can be used to
study the complex regulation mechanism and develop new
treatment for various diseases.

In addition to conventional single cell data, spatial
transcriptomics  technologies® have emerged to allow
simultaneous profiling of transcriptomes and spatial locations of
cells. This type of data allows us to study transcriptomes of cells in
relation to their cellular organization. Many studies indicate that
spatially variable genes are the potential novel markers or essential
regulators for tissue pattern formation and homeostasis™. Thus,
these spatial transcriptomics data have great potential to provide
detailed molecular maps for investigating the complex context-
specific regulatory networks.

4 Computational  approaches for  the
construction of regulatory networks

Approaches for regulatory network construction typically involve
the integration of various types of experimental and
computational data® *. Wang et al. discuss the efforts of
integrating the DNA accessibility data, transcriptional data, and
functional genomic regions together to enable the accurate
interpretation of regulatory landscape®. Duren et al. propose a
statistical approach, named PECA, to build gene regulatory
networks based on paired expression and chromatin accessibility
data across diverse cellular contexts™. Xin et al. develop a variant
interpretation methodology (VPECA) to identify active selected
regulatory elements and associated regulatory network based on
temporal data of paired ATAC-seq and RNA-seq data™. In
general, network inference approaches use statistical models to
identify regulatory interactions between genes and other
molecules, then the regulatory networks can be spontaneously
constructed using the predicted interactions™. Up to now, there
have been lots of computational methods developed to construct
context-specific regulatory networks from omics data, including
regression-based methods, Bayesian networks, machine learning
models, and single-cell based methods®>*”**,

Regression-based methods: Regression-based methods assume
a linear or non-linear relationship between the abundance or
expression of the target molecules and its potential regulators in a
particular tissue or a specific biological context. The inference
methods can mine the essential rules on partial omics data,
discover interactions reflected by the molecular level and finally
present complex regulatory relationships in the form of
network™. Compared with simple correlation-based methods,
regression models can be combined with regularization
approaches, such as linear regression”, elastic net"””, or support
vector regression (SVR)!, to improve the accuracy of the
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regulatory network and reduce overfitting.

One of the typical applications of the regression-based methods
in the construction of regulatory networks is the calculation of the
correlation between genotypes and omics features, which is also
known as QTLs. QTL studies are widely used to explore how
genetic variation functions and affects the quantitative molecules
in a specific cellular context"” (Fig. 3). In a QTL study, researchers
typically genotype a large number of individuals and measure the
levels of certain molecules (e.g. CpGs, genes, or proteins). Then by
analyzing the correlation between the genotypes and molecular
levels, regions of the genome that are likely to harbor genetic
variants that influence the molecules can be identified"”.

mQTLs (methylation quantitative trait loci) are genetic variants
associated with changes in DNA methylation levels, where DNA
methylation is an epigenetic modification that can affect gene
expression and not alter the DNA sequence itself". eQTLs
(expression quantitative trait loci) are genetic variants associated
with changes in gene expression levels. These variants can be
located within a gene or in regions that regulate gene expression.
eQTL studies statistically link SNPs to genes and can help to
identify genes and pathways that participate in the mechanism of
disease or other complex traits104. pQTL (protein quantitative
trait loci) are genetic variants that are associated with changes in
protein levels or protein function. pQTL studies can help to
identify genes involved in the regulation of protein function,
which is important for the understanding of many biological
processes'”. We introduced several studies of mQTLs, eQTLs,
and pQTLs in Table 3, all of whose QTLs are publicly available.
Overall, these different types of QTLs can be applied as part of the
context-specific ~ regulatory networks and provide a
complementary understanding of the genetic regulation of
complex traits.

Bayesian networks: Bayesian network model has become a
powerful tool for constructing gene regulatory networks with its
solid theoretical foundation, natural representation of knowledge
structure, and flexible reasoning ability”. In a Bayesian
framework, the probability of a regulatory interaction between
two molecules is calculated based on the available data and prior

knowledge. One common application of Bayesian networks is to
construct dynamic regulatory networks using the longitudinal
data processed during biological development or in response to a
perturbation such as drug treatments or genetic manipulations’”.
For example, the dynamic Bayesian network can be used to model
the time-varying relationships within molecules and captures
interactions that drive changes over time'™.

Machine learning models: To use machine learning methods
for regulatory network construction, we first need gene expression
or other relevant genomics data, as well as a set of known
regulatory interactions as a training set. The resulting trained
model can then be used to predict new regulatory interactions
between molecules'”. The most popular machine learning models
used to construct regulatory networks include decision trees,
random forests, support vector machines (SVMs), and deep
learning-based neural networks'”. For example, Zhou et al
developed a deep learning-based framework, DeepSEA, that
directly learns a regulatory sequence code from large-scale
chromatin-profiling data and enables the prediction of chromatin
effects of sequence alterations with single-nucleotide sensitivity"*,
and the underlying mechanism of this model was interpretated by
NeuronMotif”. Avsec et al. proposed a deep learning
architecture, Enformer, which substantially improves gene
expression prediction accuracy from DNA sequences, yielding
more accurate variant effect predictions on gene expression and
providing predicted enhancer-promoter interactions’™. Both
DeepSEA and Enformer can be used to predict the regulatory
effects of non-coding variants on context-specific gene expression,
which links the SNPs to genes and provides functional
interactions for the construction of the context-specific regulatory
networks.

Single cell-based methods: Single-cell expression data are
especially promising for computing gene regulatory networks
(GRNs) because they do not obscure biological signals by
averaging over all the cells in a sample. However, these data have
features including substantial cellular heterogeneity, cell-to-cell
variation in sequencing depth, high sparsity caused by dropouts
and cell-cycle-related effects, that pose significant difficulties.

GWAS analysis
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Fig.3 Scheme of QTLs and its role in mechanism modeling.
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Table 3 Summary of the resources for different types of QTLs.

Type Database/Paper Sample Size Number of QTLs Year Homepage
mQTL Me&{fgzgg“ 5,533 175, 091 2016 http://www.mqtldb.org/
mQTL BIOS QTL Browser!"™ 3,841 272,037 cis; 18, 764 trans 2017 http://www.genenetwork.nl/biosqtlbrowser
mQTL Min et al.l”! 27,750 >270, 000 2021 http://mqtldb.godmc.org.uk
mQTL Hawe ea al.""! ~7, 000 11, 165, 559 2022 https://zenodo.org/record/5 196 216#.YRZ3T{JxeUk
mQTL FHS_meQTLs"" 4170 4,700, 000 cis; 630, 000 trans 2019 https'//ﬂp'anl'nlm'ggéf(zég'i}LZZIglnalfsubmmmm/
mQTL Pancan-meQTL!""? 7,242 8, 028, 964 cis; 965, 050 trans 2018 http://gong_lab.hzau.edu.cn/Pancan-meQTL/
eQTL GTExPortal"” ~10,000 ~30,000,000 2020 https://gtexportal.org/home/

eQTL GTExPortal"" ~10,000 ~30,000,000 2020 https://gtexportal.org/home/

eQTL eQTLG:(g;?“r:jortium 31,684 10, 507, 665 cis; 59, 787 trans 2021 https://www.eqtlgen.org/

eQTL GEUVADIS" 462 18, 366 2013 https://www.ebi.ac.uk/

eQTL MRCA eQTLs" 1, 350 7,302 2013  https://www.hsph.harvard.edu/liming-liang/software/eqtl/
eQTL Brain eQTL!""! 412 1, 815,172 2018 https://eqtl.brainseq.org/

eQTL PancanQTL"* 9,196 5, 606, 570 cis; 231, 210 trans 2017 http://gong_lab.hzau.edu.cn/PancanQTL/
pQTL Sun et al."” 3,301 1,927 2018 http://www.phpc.cam.ac.uk/ceu/proteins/
pQTL  Ferkingstad et al. 35,559 18, 084 2021 st/ Www'n"‘mre"izrl\r/’[/ (;r;ﬁﬁ/ SALSE8-021-00978-
pQTL Yao et al."” 6, 861 >16, 000 2018 https://preview.ncbi.nlm.nih.gov/gap/eqtl/studies/
pQTL Zhang et al."" ~9, 000 4, 069 2022 http://nilanjanchatterjeelab.org/pwas

pQTL Gudjonsson et al.!"*"! 5,368 4,035 2022 https://doi.org/10.528 1/zenodo.5711426

Despite these challenges, over a dozen methods have been
developed or used to infer GRNs from single-cell data. We can
categorize these methods into three groups based on how the
network is constructed: differential equation, gene correlation, and
correlation ensemble over pseudo-time. For example, PPCOR is a
differential equation-based R package that computes the partial
and semi-partial correlation coefficients for every pair of genes,
with respect to all the other genes™. SCENIC computes the
regulatory network for each gene independently using tree-based
ensemble methods'™. LEAP utilizes pseudo time-ordered data
and calculates the Pearson’s correlation of normalized mapped-
read counts over temporal windows of a fixed size with different
lags to construct the GRN"".

The above methods can be incorporated with the prior
knowledge about the biology of the system, such as known
interactions between genes and proteins provided by GO,
KEGG"”, STRING"" and other public databases, to construct a
more comprehensive regulatory network.

5 Applications of the regulatory networks in
modeling the causal mechanism

Context-specific regulatory networks have been used in a wide
range of applications to demonstrate and understand the complex
relationships between genes, proteins, and other biological
molecules in a particular cellular context™. The networks can be
constructed based on the complex interactions within
epigenomics, transcriptomics and proteomics, where the nodes
typically represent biological entities such as genes, proteins, or
other molecules, and the edges represent the interactions between
these entities™. The typical context-specific regulatory networks
include gene regulatory network®™, gene co-expression network'"”,
protein-protein  interaction networks™’, promoter-enhancer
networks"™, as well as the integration of multi-omics
networks[ﬂ‘),l-’l(],l#lh]-lz,\-)3,14—1]'

These networks can help to explain how genetic variations or
perturbations affect cellular behavior and lead to changes in
phenotype, contributing to the explanation of the relationship
between genotypes and phenotypes* . Here are several
examples of how the context-specific regulatory networks have
been used in different applications (Fig. 4).

Interpretation of GWAS: GWAS typically identify many
genetic variations associated with a complex trait, but can hardly
recognize which variations are causally linked to the phenotype*.
Context-specific regulatory networks can be used to prioritize
candidate genes by identifying which genes are functionally
related to the phenotype of interest and are likely to be affected by
the genetic variation™". Integrating GWAS results with regulatory
networks can identify the genes and pathways that are
dysregulated in the disease state and the genetic variations that
contribute to this dysregulation"*’. For example, Finucane et al.
introduce a method, stratified linkage disequilibrium (LD) score
regression, for partitioning heritability from GWAS summary
statistics while accounting for linked functional elements'*. Zhu
et al. develop a Bayesian framework that integrates GWAS
summary statistics with context-specific regulatory networks to
infer genetic enrichments and associations simultaneously”".

Cancer genomics deciphering: Cancer cells are heterogeneous
and can differ in their genomic, transcriptomic, and epigenomic
profiles"*”. The context specificity of the regulatory network allows
us to model the context-specific molecular interactions that
contribute to cancer heterogeneity and helps to identify mutations
that play an important role in cancer development and
progression” 1. Besides, with the context-specific regulatory
network, we can also detect genes and pathways that are
dysregulated in cancer cells"> "™, providing insights into the
molecular mechanisms underlying cancer genomics.

Personalized medicine: The context-specific regulatory
networks can help with the identification of personalized
treatment options based on an individual’s genetic profile!”. By
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Fig.4 Applications of the context-specific regulatory network in modeling the causal mechanism of phenotypes.

modeling the interactions between genes, proteins, and other
molecules in an individual’s cells, we can identify the optimal
treatment options for a particular disease for the individual. The
context-specific regulatory network can also be used to predict the
response to specific mutations by modeling the interactions
between the mutation and the phenotype of interest'”. By
identifying the genes and pathways that are affected by the
mutation and their downstream effects on cellular behavior, we
can predict the influence of the individual’s mutation on the given
phenotype, providing a solution for the development of
personalized medicine"”.

Collectively, the context-specific regulatory network is a
powerful tool for deciphering the relationships between genotypes
and phenotypes, providing insights into the molecular
mechanisms underlying complex traits and diseases and
contributing to the identification of potential targets for
therapeutic interventions.

Future goals and challenges

In this paper, we review diverse genomics and omics data
provided by biobanks and other organized projects, discuss the
approaches commonly used to construct context-specific
regulatory networks with omics data, and elaborate the
importance of context-specific regulatory networks as part of the
causal model linking genotypes to phenotypes. To sum up,
modeling the causal mechanism between genotypes and
phenotypes via context-specific regulatory networks helps in
improving our understanding of biological systems underlying
various phenotypes. However, some technological and analytical
improvements will still be needed for the construction and
application of reliable context-specific regulatory networks.

First, context-specific regulatory networks provide a static
snapshot of the regulatory landscape, which may not capture
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dynamic changes in regulatory interactions over time or in
response to different stimuli or conditions'”. To address this
limitation, we may need to generate additional datasets under
different conditions or perturbations to obtain a more
comprehensive and dynamic view of the regulatory network and
apply causal inference method for analysis’. Perturbing a
biological system, such as a cell or a tissue, can provide valuable
insights into the underlying regulatory mechanisms that govern
the system’s behavior'”. Generating reference data after
perturbation provides important information on how the
regulatory network changes in response to the perturbation’. For
example, if a gene is knocked out or silenced, its downstream
targets may also be affected, resulting in changes to the regulatory
network. By comparing the regulatory network before and after
perturbation, we can identify the specific regulatory interactions
that are affected by the perturbation and gain insights into the
underlying mechanism.

Second, biobank data provide a wealth of genomic and
phenotypic data from large and diverse populations and include a
variety of data types, such as epigenetic data, gene expression data,
and dlinical data, enabling the development of context-specific
regulatory networks that capture the complexity of the biological
system. However, there are also challenges for regulatory networks
to interpret biobank data. On the one hand, biobank data can be
highly heterogeneous, with variation in sample size, data quality,
and data types. This heterogeneity can make it challenging to
integrate different types of data into a coherent model. On the
other hand, biological systems are highly complex, and the
interactions between genes, proteins, and other molecules can be
difficult to model. This complexity would make it difficult to
identify causal relationships between genotypes and phenotypes.

Third, the accuracy of regulatory networks is highly dependent
on the computational methods used to analyze the omics data and
construct networks. Therefore, developing new statistical and
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machine learning approaches that can handle large and diverse
datasets and are less prone to overfitting or misinterpretation is of
significance. Besides, the integration of multiple types of omics
data can provide a more comprehensive view of the underlying
regulatory mechanisms that govern a biological system.
Computational approaches for the integration of genomic,
epigenomic, transcriptomic, proteomic, and other relevant data to
build a more complete picture of the regulatory landscape should
also be developed. In addition, context-specific regulatory
networks can also be integrated with other types of biological
networks, such as metabolic networks and molecular signaling
networks, to better understand the complex interplay between
different biological processes and their relationship to phenotype.

Fourth, biological systems are highly complex and involve
numerous interacting components, such as genes, proteins, and
regulatory elements, that operate at multiple levels and are subject
to a wide range of internal and external factors. Since context-
specific regulatory networks are based on statistical and machine
learning models, they can be sensitive to noise and biases in the
data, leading to incorrect or misleading interpretations of the
underlying regulatory mechanisms. Besides, the interpretation of
context-specific  regulatory networks requires a deep
understanding of the biological processes and pathways involved,
as well as the technical details of the data generation and analysis.
This can be a significant challenge for researchers with limited
experience in computational biology and bioinformatics.

Overall, the goal of modeling the causal mechanism between
genotypes and phenotypes via context-specific regulatory
networks is to provide a more comprehensive and accurate
understanding of the underlying biological mechanisms between
genotypes and phenotypes. However, this requires overcoming a
number of challenges, including the generation of more reliable
datasets, the development of more accurate and robust
computational methods, the integration of diverse and complex
datasets, and the translation of this knowledge into clinical
practice.
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