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Abstract—Gene regulatory networks (GRNs) are critical
blueprints for understanding gene regulation and the intricate
interactions that drive biological processes. Recent advances
have highlighted the potential of single-cell ATAC-seq (scATAC-
seq) data in GRN inference, offering unprecedented insights
into how chromatin accessibility plays an important part in
gene regulation. However, existing methods often fall short in
providing a quantitative and holistic depiction of regulatory
relationships, particularly in capturing the strength, direction,
and type of gene regulation simultaneously. In this paper,
we present a novel approach that addresses these limitations
by leveraging genetically perturbed scATAC-seq data to infer
more comprehensive and accurate GRNs. Our method advances
the field by integrating pre- and post-perturbation chromatin
accessibility data, enabling the construction of GRNs that more
accurately reflect the dynamic regulatory landscape. Through
rigorous evaluation on seven real datasets, we demonstrate the
method’s superior performance in reconstructing GRNs with
enhanced precision and interpretability. This work significantly
contributes to the field by providing a robust framework for
GRN inference, with broad implications for understanding gene
regulation in complex biological systems.

Index Terms—gene regulatory network inference, scATAC-seq,
gene perturbation, in silico perturbation

I. INTRODUCTION

Gene regulatory networks (GRNs) represent intricate net-
works of interactions between genes and regulatory elements,
playing a pivotal role in understanding the mechanisms un-
derlying various diseases [1]. With the rapid advancement of
high-throughput sequencing technologies, numerous methods
such as SCENIC [2], GRNBoost2 [3], and DeepSEM [4]
have been developed for inferring GRNs using single-cell
RNA sequencing (scRNA-seq) data [5]. However, epigenomic
data, particularly from single-cell ATAC sequencing (scATAC-
seq), offer a more direct and informative perspective for
studying gene regulation. Despite this potential, the unique
characteristics of scATAC-seq data pose significant challenges
for GRN inference due to the much higher dimensionality,
making it a more complex task than GRN inference from
scRNA-seq data.
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Current methods for inferring GRNs from scATAC-seq data
remain limited in scope, often failing to capture the full com-
plexity of regulatory relationships. For instance, approaches
like DeepTFni [6] construct GRNs as undirected graphs, lack-
ing crucial regulatory directional information, while methods
such as SCRIP [7] fail to adequately represent the strength
and type of gene regulation. This highlights an urgent need
for more comprehensive methods to construct GRNs from
scATAC-seq data.

With the advent of gene editing technologies, integrating
gene purturbation experiments with single-cell omics data has
emerged as a promising research direction. Methods such as
CellOracle [8] have improved our understanding of intergenic
regulatory mechanisms by analyzing single-cell omics data be-
fore and after in silico gene perturbations. Similarly, Perturb-
ATAC [9], which combines multiplexed CRISPR perturbations
with scATAC-seq, assesses the impact of specific gene pertur-
bations on chromatin accessibility, shedding light on the roles
of regulatory elements in gene expression regulation. Together,
these technologies have the potential to enhance the depth and
breadth of GRN inference by enriching the data with additional
layers of information.

In light of these advancements, this paper introduces a novel
method for accurately and comprehensively inferring GRNs
using genetically perturbed scATAC-seq data. Our approach
consists of four key steps: 1) Calculation of Gene Activity
Matrices (GAMs): We begin by computing gene activity
matrices from chromatin accessibility data obtained before
(GAMWT) and after (GAMKO) gene perturbations. This step
transforms the raw scATAC-seq data into a form that reflects
the regulatory activity of genes in both wild-type and perturbed
states. 2) Construction of the Base GRN: Using the GAMWT,
we construct an initial, or base, GRN. This network serves as
a starting point, representing the interactions between genes
based on their baseline regulatory activities without any pertur-
bations. 3) Simulation of Gene-Specific Perturbations: We
then apply in silico perturbations to the GAMWT, propagating
these perturbation effects through the GRN. This simulation
process generates a new matrix (GAMsimulated) that reflects
the expected changes in gene activity resulting from specific
perturbations, thus modeling how the network responds to
these perturbations. 4) Optimization and Refinement of the



GRN: Finally, we iteratively refine the GRN by minimizing
the mean square error (MSE) between the simulated gene
activity matrix (GAMsimulated) and the actual post-perturbation
matrix (GAMKO). Using a gradient descent algorithm, we
adjust the edge weights within the GRN to optimize its accu-
racy, ultimately resulting in a more precise and comprehensive
network that captures the strength, direction, and type of gene
regulation.

The proposed method was rigorously evaluated on seven
publicly available datasets from the GEO database, demon-
strating its superior efficacy in GRN inference. Our approach
offers several key contributions to the field: 1) Enhanced
Precision in GRN Construction: By integrating genetically
perturbed scATAC-seq data, our method more accurately cap-
tures the interplay between genes and regulatory elements,
reflecting real biological responses to genetic modifications.
2) Comprehensive Representation of Regulatory Rela-
tionships: Unlike existing methods, our approach simulta-
neously captures the strength, direction, and type of regula-
tory interactions, offering a detailed understanding of gene
regulation through iterative refinement aligned with observed
gene activity. 3) Robustness Across Diverse Datasets: The
method’s effectiveness across diverse datasets demonstrates
its robustness and adaptability, making it a versatile tool for
genetic and epigenomic studies. 4) Advancement of scATAC-
seq Data Utilization: Our method effectively addresses the
challenges of scATAC-seq data, highlighting its potential in
GRN inference and paving the way for future epigenomic
studies. 5) Integration of Gene Perturbation for Improved
Inference: The novel incorporation of gene perturbation data
enables dynamic modeling of gene regulation, providing a
framework to understand the causal effects of regulatory
interactions.

In summary, our method offers a powerful approach for
GRN inference, leveraging genetically perturbed scATAC-seq
data to construct detailed and interpretable gene regulatory
networks with significant implications for both research and
clinical applications.

II. METHODS

A. Datasets

We conducted a comprehensive search of the GEO database
using relevant keywords such as scATAC-seq, knockout, and
CRISPR, resulting in the identification of 851 experimental
projects. Following a thorough manual screening process, we
selected four projects, comprising a total of seven perturbed
scATAC-seq datasets, to serve as the experimental data for this
study. These datasets, which include both mouse and human
samples, involve gene knockouts or perturbations and are
classified into three distinct categories: single-gene knockout,
multi-gene knockout, and Perturb-ATAC. Detailed information
regarding these datasets can be found in Table I.

B. Data Preprocessing

Initially, comprehensive pre-processing of scATAC-seq data
was conducted using the R toolkit Signac [14], encompass-

ing four primary steps: sample integration, gene annotation,
quality control, and normalization. 1) Sample Integration:
A method of merging overlapping peaks was employed to
generate a common peak set for duplicate samples and filter
out anomalous peaks. Subsequently, Seurat [15] objects were
created for the quantized peaks of each sample, and the
duplicate sample objects were merged. 2) Gene Annotation:
Gene annotation information from the Ensembl database was
added to the Seurat object, including details such as the
location, type, and name of each gene. 3) Quality Control: To
minimize noise and error, we filtered out cells with abnormal
total sequencing read counts (top and bottom 1%), high
nucleosome signal intensity (top 2%) that impedes chromatin
accessibility, and low transcription start site (TSS) enrichment
scores (bottom 1%). 4) Normalization: Based on the TF-
IDF method, normalization was performed across cells in the
horizontal dimension to correct for differences in sequencing
depth and across peaks in the vertical dimension to assign
higher weights to rare peaks.

C. Computing Gene Activity Matrix

Inspired by the use of transcription factor (TF) expression
as the motif activity of TF in scBasset [16], we utilized gene
activity as the primary indicator to characterize chromatin
accessibility and potential functional activity. We quantified
the activity of each gene within a cell using Signac based on
the total fragment counts at the gene promoter, gene body,
and the 2kb upstream region of the gene body. Consequently,
we constructed gene activity matrices, GAMWT and GAMKO,
representing pre- and post-perturbation data in a gene-cell
format, respectively.

While GAMWT and GAMKO in gene-cell format share
identical row dimensions (denoted as p genes), they differ
in column dimensions (n1 and n2 cells, respectively). To
facilitate subsequent comparison, we integrated the two GAMs
for cell clustering, converting them into a gene-cluster format
with matching dimensions based on the clustering results. The
entire process is illustrated in Fig. 1(a).

To align cellular subpopulations and states shared across
sample data, we integrated GAMWT and GAMKO in gene-cell
format after batch correction using Seurat [15]. Initially, we
conducted feature selection to identify the top 2,000 variable
features based on mean-variance calculations by default. Sub-
sequently, these features were scaled, centred, and subjected
to PCA dimensionality reduction. Finally, data integration was
performed using the CCA algorithm [17].

After data integration, cell clusters were identified using a
clustering algorithm based on shared nearest neighbor (SNN)
modularity optimization [18]. First, calculate k-nearest neigh-
bors and construct the SNN graph. Then, optimize the mod-
ularity function to determine clusters (denoted as k clusters).
Based on the cell clustering information, the gene activities
of cells in each cluster were averaged for both GAMWT and
GAMKO, converting the GAM to a gene-cluster format with
column dimensions of k.



TABLE I
DESCRIPTION OF THE DATASETS

Knockout Type Dataset Species and Tissues Cell Type KO Gene Cells（WT/KO） Peaks（WT/KO） Accession Code

Single-Gene KO
mSpl Mouse spleen CD4+ T、CD8+ T Prmt5 3,506 / 4,475 151,569 / 153,810 GSE195882 [10]

mBM-young Mouse bone marrow HSPC Tet2 10,167 / 5,147 179,291 / 162,666 GSE183675 [11]
mBM-old 11,576 / 6,263 166,895 / 172,705

Multi-Gene KO mBK Mouse back skin HFSC Foxc1、Nfatc1 7,378 / 8,347 228,696 / 232,159 GSE133646 [12]

Perturb-ATAC
hL-GM Human lymphoid GM12878

Multiple genes (40)
639 / 6,016 159,204 / 162,165

GSE168851 [13]hB-K562 Human blood K562 1,187 / 12,354 209,024 / 210,069
hB-MCF7 Human breast MCF7 515 / 4,434 251,576 / 259,096
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Fig. 1. The overall workflow for inferring GRN. (a) Calculate gene activity in the preprocessed data to construct GAMs for pre- and post-perturbation data
in gene-cell and gene-cluster formats. (b) Use the wild-type GAM in gene-cell format to infer the base GRN using linear computational methods. (c) In silico
perturbation of specific genes in the wild-type GAM in gene-cluster format. (d) Propagate the perturbation effects through the network by multiplying the
perturbation change vector with the GRN coefficient matrix. (e) Continuously optimize the GRN coefficient matrix by minimizing the differences between
the in silico perturbation and the real perturbation GAMs in gene-cluster format.

D. Constructing Base GRN

To facilitate the propagation of in silico perturbation effects
through the GRN, we use a linear computational approach to
construct a directed regulatory network model with quantized
weight edges, both positive and negative, as the base GRN.
This model’s edge magnitudes indicate regulatory strength,
with positive and negative values differentiating regulation
types and edge directions representing regulatory flow. We
adapted the GRN inference approach from scTenifoldNet [19],
using GAM to infer the base GRN after targeted optimizations.
The process involves three steps: cellular subsampling, PC
regression, and tensor decomposition denoising, as shown in

Fig. 1(b).

1) Subsampling of Cells: GAMWT (gene-cell form) con-
tains the activity values of p genes in n cells. A random
subsampling of c cells was performed using bootstrapping,
and the result was denoted as S′. This subsampling process
is repeated t times to create t subsets of cells, denoted as
S′
1, . . . , S

′
t ∈ Rp×c, ensuring robustness to cellular heterogene-

ity within the sample. The values of t and c are dynamically
adjusted based on the size of the dataset, with a minimum
requirement that t × c exceeds the total number of cells. we
set the default values to t = 10 and c = 500.



2) PC Regression: Each S′ undergoes p PC regressions,
and the regression coefficients are integrated to form an adja-
cency matrix B with dimensions p× p, where the (i, j) entry
reflects the influence coefficient of the ith gene on the jth gene.
Overall, the risk of overfitting in PC regression is reduced, and
computational efficiency is improved by performing regression
on M PCs (M ≪ p, default value of M set to 3) to construct
the base GRN. The detailed application of PC regression is as
follows:

For ease of formula presentation, S ∈ Rp×c is used here to
refer to S′ above. The ith row of S, denoted by Si, represents
the activity level of the ith gene in the c cells. The data
matrix S−i ∈ R(p−1)×c is constructed by removing Si from
S. First, apply PCA to ST

−i and take the first M leading PCs
to construct Zi = (Zi

1, . . . , Z
i
M ) ∈ Rc×M , where Zi

j ∈ Rc

denotes the jth PC of ST
−i for 1 ≤ j ≤ M . Mathematically,

Zi = ST
−iV

i, where V i ∈ R(p−1)×M is the PC loading
matrix of the first M leading PCs, satisfying (V i)TV i = IM .
Subsequently, the PC regression method regresses Si on Zi

and solves the following optimization problem:

β̂i = arg min
βi∈RM

Si −Ziβi2

2 . (1)

Then, α̂i = V iβ̂i ∈ Rp−1, the coefficients of the PC
regression model, quantify the influence of the other p − 1
genes on the ith gene. Finally, the coefficients from the p
regression models are aggregated into a weighted adjacency
matrix B with dimensions p× p. The ith row of B is α̂i, and
the diagonal values are all 0. We chose to filter and retain the
edges in B with the top 90% of absolute magnitude.

3) Denoising via Tensor Decomposition: We stack t adja-
cency matrices to form a third-order tensor Ξ with dimensions
p × p × t. Applying CANDECOMP/PARAFAC (CP) tensor
decomposition, we decompose Ξ into multiple components
and use the top components to reconstruct the denoised tensor
Ξd. Similar to the truncated SVD of a matrix, the CP tensor
decomposition assumes that the effective information in Ξ can
be described by d rank-1 tensors, with the remainder Ξ− Ξd

primarily representing noise:

Ξ ≈ Ξd =

d∑
r=1

λrar ◦ br ◦ cr, (2)

where ◦ denotes the outer product, ar ∈ Rp, br ∈ Rp,
and cr ∈ Rt are unit-norm vectors, and λr is a scalar. The
reconstructed tensor Ξd ∈ R(p×p×t) consists of t denoised
adjacency matrices, which are averaged to obtain an overall
stable adjacency matrix Bd. We further normalize entries by
dividing them by their maximum absolute value to obtain the
final base GRN.

E. In Silico Gene Perturbation and Signal Propagation

We perform in silico gene perturbations in the gene-cluster
form of GAMWT and construct GAMsimulated by propagat-
ing the perturbation effects step-by-step along the network
structure using GRN generated through linear computational
methods.

In the gene-cluster form of GAMWT, each column of data
records the activity values of genes within each cluster. By
extracting and transposing each column of data, we obtain
the vectors X1, X2, . . . , Xk ∈ R1×p. Let XWT represent
the vector corresponding to a cluster before the in silico
perturbation. To simulate the knockout of gene g, we set
the value of gene g in XWT to zero, resulting in the initial
simulated perturbation vector, XKO. The process is illustrated
in Fig. 1(c).

Let xi denote the activity value of gene i in a particular
cluster. Since the base GRN is generated using a linear
computational method, if gene j is directly regulated by gene
i, the derivative ∂xj

∂xi
is a constant, denoted as bi,j in the weight

coefficients matrix B of the GRN. It represents the weight of
the regulatory influence of gene i on the target gene j:

∂xj

∂xi
= bi,j . (3)

Therefore, the change in the target gene ∆xj varies with the
change in the regulatory gene ∆xi:

∆xj =
∂xj

∂xi
∆xi = bi,j∆xi. (4)

The network edge represents a differentiable linear function,
as shown above. The connections between indirectly connected
nodes in the network are differentiable composite functions of
the linear model. Therefore, we can apply the chain rule to
calculate the partial derivatives of the target gene:

∂xj

∂xi
=

n∏
k=0

∂xk+1

∂xk
=

n∏
k=0

bk,k+1, (5)

where xk ∈ {x0, x1, . . . , xn} denotes the gene activity value
of the ordered network nodes on the shortest path from gene i
to gene j. For example, when considering the network edges
from gene 0 to 1 to 2, an intermediate connection to gene 1
can be utilized to compute small changes in the response of
gene 2 to gene 0:

∂x2

∂x0
=

∂x1

∂x0
× ∂x2

∂x1
= b0,1 × b1,2, (6)

∆x2 =
∂x2

∂x0
∆x0 = b0,1b1,2∆x0. (7)

Thus, the change in the activity of the target gene can be
calculated as the product of ∆xi and bi,j . The effect of the in
silico perturbation can be propagated linearly by multiplying
X with B in the form:

X ′ = X ·B + C, (8)

where X ∈ R1×p is a gene activity vector containing p genes,
and C ∈ R1×p is the intercept vector of the linear model.

The perturbation effect propagation process is illustrated in
Fig. 1(d). The product of the activity change vector and B
is the propagation of perturbation information. Accordingly,
by repeatedly performing this operation, the effect of the
perturbation on the activity of all downstream target genes
after multiple propagations can be deduced. ∆Xpert ∈ R1×p is



a sparse vector consisting of zeros except for the perturbation
target gene g:

∆Xpert = XKO −XWT . (9)

The effect of perturbation on the activity of indirectly regulated
target genes from the perturbed target genes to the nth layer
can be estimated by repeatedly operating n times:

∆Xn = ∆Xn−1 ·B +∆Xpert. (10)

We evaluated seven real datasets to ensure the simulated
propagation modeling aligns with real-world perturbations, fo-
cusing on the discrepancy between GAMKO and GAMsimulated
across different propagation rounds. Here we use the untrained
base GRN for propagation to better reflect predefined model-
ing characteristics while excluding the effects of posterior su-
pervised training. Ideally, n should balance model complexity
and generalization to match biological conditions. For each
n , we calculated the average Pearson correlation coefficient
(PCC) and coefficient of determination R2 ∈ (−∞, 1], with
higher values indicating a closer match between the simulated
and actual values (Fig. 2, Table II).

In Fig. 2, Round 0 (n = 0) compares the wild-type and
perturbed GAMs (GAMWT and GAMKO), showing only subtle
differences and no drastic changes. However, at n = 3, both
PCC and R2 values drop significantly into an undesirable
range, likely due to the GRN’s tendency to form dense graphs
causing rapid accumulation of perturbation effects through
feedback loops. While higher n improves the model’s fit
to regulatory complex relationships, it risks deviating from
biological principles. To maintain a reasonable difference
between GAMsimulated and GAMKO, we determined the optimal
n to be 2.
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Fig. 2. Average Pearson correlation coefficients of the corresponding cluster
columns between GAMsimulated and GAMKO in the gene-cluster format after in
silico perturbation effects have propagated across different propagation rounds
n on seven real datasets.

TABLE II
AVERAGE R2 SCORES OF COLUMNS BETWEEN GAMSIMULATED AND

GAMKO ACROSS DIFFERENT PROPAGATION ROUNDS.

Dataset The R2 scores for n rounds of propagation
n=0 n=1 n=2 n=3

mSpl 0.498 0.500 0.399 -126.144
mBM-young 0.433 0.420 0.055 -42.671

mBM-old 0.008 0.028 -0.722 -61.892
mBK 0.889 0.881 0.302 -148.946

hB-GM 0.809 0.805 0.207 -472.267
hB-K562 0.905 0.901 0.228 -1295.290
hB-MCF7 0.876 0.866 0.071 -3890.735

F. Refining Base GRN

To refine base GRN constructed by GAMWT, we con-
sider the coefficient matrix B of the GRN as the trainable
parameter matrix for training initialization. The gene-cluster
format GAMsimulated obtained from in silico perturbations, is
compared with the GAMKO (ground truth) corresponding to
real perturbations, using the mean square error (MSE) as the
discrepancy metric to train and adjust B. The Frobenius norm
is introduced in the training for regularization constraints to
prevent excessive deviation from the base GRN, which could
result in a lack of biological plausibility.

Loss = MSE (GAMsimulated , GAMKO)

+λ ∗ ∥D · (GRN −GRNbase )∥F ,
(11)

Where λ represents the regularization term’s weight, D is
a diagonal matrix with values of 2 on the diagonal for the
corresponding columns and rows of the perturbed genes and
values of 1 for the rest of the diagonal entries, assigning greater
importance to the direct neighbors of the perturbed genes. The
training process employs the ADAM optimizer. The final GRN
is the refined GRN obtained by training the base GRN. The
workflow is illustrated in Fig. 1(e).

G. Evaluation Strategies

To evaluate our method’s effectiveness and performance, we
compared it against several benchmark methods using seven
real perturbed scATAC-seq datasets from the GEO database.
The details of datasets are presented in Table I. Given that no
existing methods solely use scATAC-seq data to infer GRN
with information on regulatory direction, intensity, and type,
we converted the scATAC-seq data to GAM. We used main-
stream scRNA-seq GRN inference methods as benchmarks.
The selected benchmark methods are:

• PPCOR [20]: An R package for calculating partial and
semipartial correlation coefficients.

• SCODE [21]: An algorithm for inferring GRN based on
ordinary differential equations.

• DeepSEM [4]: A deep generative model that explicitly
models regulatory relationships between genes through a
neural network version of structural equation modeling.

The primary evaluation criterion is to assess whether the
cell type-specific GRNs inferred by each method accurately



reconstruct known gene regulatory relationships within the
specific cell types. We employed three distinct evaluation
approaches in our experiments:

1) Validation Against Dataset Publications: This approach
involves assessing whether the inferred GRNs successfully
replicate the novel gene regulatory relationships reported in
the original research publications associated with the datasets.

2) Cross-Validation Using the TRRUST Database: TR-
RUST [22] is a manually curated database containing tran-
scriptional regulatory networks for humans and mice, with
8,444 and 6,552 TF-target relationships for 800 human TFs
and 828 mouse TFs, respectively. We evaluated the inferred
GRNs by comparing them against the relationships docu-
mented in TRRUST using five key metrics: Accuracy, Recall,
Precision, F1 score, and Area Under the Precision-Recall
Curve (AUPRC).

3) Literature Validation of Refined GRNs: To further vali-
date the refined GRNs, we analyzed the common and unique
gene regulatory relationships identified by different methods
during the TRRUST evaluation. For relationships uniquely
captured by the refined GRNs, we conducted a manual lit-
erature review to verify the proportion supported by existing
studies, thus reflecting the reliability of the regulatory infor-
mation provided by the refined GRNs.

III. RESULTS

To evaluate the ability of our method to reproduce ex-
perimentally validated gene regulatory relationships from the
original dataset studies, we calculated the prediction accuracy
for each method. The comparison results are presented in Table
III, where the "base GRN" refers to the initial, unoptimized
gene regulatory network generated by our approach, and the
"refined GRN" denotes the final, optimized version. It is
important to note that the hL-GM and hB-MCF7 datasets
were excluded from this evaluation as their corresponding
studies did not explicitly validate gene regulatory relationships.
Remarkably, our refined GRN demonstrated 100% accuracy,
successfully replicating all newly discovered regulatory rela-
tionships, representing a 31.25% improvement over the base
GRN and a 25% improvement over the best benchmark,
SCODE. This significant enhancement not only preliminarily
validates the effectiveness of our method but also underscores
the potential of the refined GRN in guiding future experimental
designs and hypothesis testing.

When scaling the evaluation to encompass 14,996 tran-
scription factor (TF)-target regulatory relationships in the
TRRUST database, our method continued to outperform all
benchmarks across the five evaluation metrics: Accuracy,
Recall, Precision, F1 Score, and Area Under the Precision-
Recall Curve (AUPRC). Fig. 3 and 4 illustrate the rigorous
results from the TRRUST evaluation. Notably, in test datasets
spanning various perturbation categories—including single-
gene knockout, multi-gene knockout, and Perturb-ATAC—our
refined GRN consistently outperformed all benchmark meth-
ods across all metrics, achieving an average improvement of
7.48% in accuracy and 9.30% in AUPRC compared to the

best benchmark results. These findings highlight the superior
precision and robustness of the refined GRN in inferring
gene regulatory networks, reinforcing its effectiveness, ac-
curacy, and adaptability in uncovering genuine regulatory
relationships. This comprehensive performance suggests that
our approach provides a more reliable foundation for future
biological research.

Fig. 3. AUPRC results from the TRRUST evaluation experiments.

To further explore the common and unique gene regula-
tory relationships identified by different methods during the
TRRUST evaluation, we constructed an UpSet plot (Fig. 5).
This plot visually represents the overlap and uniqueness of
the inferred regulatory relationships between pairwise com-
parisons. Each row in the lower part of the figure corresponds
to a method, while each column reflects the overlap (or non-
overlap) of regulatory relationships between methods. In the
datasets analyzed, the refined GRN accounted for 63%, 61%,
and 60% of the regulatory relationships in the three respec-
tive datasets. The plot clearly shows that the refined GRN
not only recapitulates most of the regulatory relationships
identified by other benchmark methods but also uniquely
captures relationships that other methods fail to identify. This
finding further supports the assertion that our refined GRN
more accurately and comprehensively reflects authentic gene
regulatory interactions.

Moreover, we sought to establish the reliability of the
regulatory relationships that were uniquely identified by the
refined GRN. Given the substantial effort required to manu-
ally verify these relationships through literature review, this
analysis was conducted on three datasets within the single-
gene knockout category. As shown in Fig. 6, a substantial
proportion of the uniquely identified regulatory relationships
by the refined GRN were experimentally validated in the
literature, with 69.23% validation in the mBM-old dataset,
64.71% in the mSpl dataset, and 55.77% in the mBM-young
dataset. These results demonstrate that the majority of the gene
regulatory relationships uniquely captured by the refined GRN
have been previously validated, underscoring the reliability of
our approach in identifying accurate, yet potentially undiscov-
ered, regulatory interactions. This provides valuable insights
for researchers seeking to explore uncharted gene regulatory
landscapes.



TABLE III
VALIDATION OF GENE REGULATORY RELATIONSHIPS DOCUMENTED IN DATASET PUBLICATIONS

Dataset Gene Pair Regulation
Type

Recapitulation of Regulatory Relationships
PPCOR SCODE DeepSEM Base GRN Refined GRN (ours)

mSpl

PRMT5-KLF2

Activation

✓ ✓ ✓ ✓
PRMT5-E2F1 ✓ ✓ ✓ ✓
PRMT5-E2F2 ✓ ✓
PRMT5-E2F3 ✓ ✓ ✓ ✓ ✓
PRMT5-E2F8 ✓ ✓

mBM-young TET2-DNMT1

Inhibition

✓ ✓
TET2-DNMT3A ✓ ✓ ✓

mBM-old TET2-DNMT1 ✓ ✓ ✓
TET2-DNMT3A ✓ ✓ ✓ ✓

mBK

FOXC1-NFATC1

Activation

✓ ✓ ✓ ✓
FOXC1-BMP6 ✓ ✓ ✓ ✓
FOXC1-NPNT ✓ ✓ ✓ ✓
NFATC1-NPNT ✓ ✓ ✓ ✓
NFATC1-ITGB6 ✓ ✓ ✓
NFATC1-PEG3 ✓ ✓ ✓ ✓

hB-K562 GATA1-SPI1 Inhibition ✓ ✓ ✓
Accuracy 31.25% 75% 68.75% 68.75% 100%
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Fig. 4. Results from the TRRUST evaluation experiments using seven real datasets. (Acc: Accuracy, Rec: Recall, Prec: Precision, F1: F-score.)

In summary, through extensive evaluation and manual val-
idation, we have conclusively demonstrated the effective-
ness of our approach in accurately inferring gene regulatory
relationships. Our method consistently outperforms existing
benchmarks across multiple datasets and metrics, offering a
powerful tool for discovering reliable regulatory information
that can drive future research and experimental efforts.

IV. CONCLUSION

This study presents a novel and robust method for inferring
GRNs from genetically perturbed scATAC-seq data, offering
significant advancements over previous approaches. Unlike
traditional methods, our approach integrates comprehensive
quantitative weights alongside detailed regulatory directions
and categories, enabling a more precise reconstruction of

complex regulatory networks. The workflow, driven by a
combination of GAMWT and GAMKO, incorporates in silico
perturbations and iterative refinement processes to generate an
optimized GRN that closely mirrors biological reality. Exten-
sive validation across seven distinct gene knockout datasets
demonstrates the superior accuracy, robustness, and adaptabil-
ity of our method in recapitulating experimentally verified
gene regulatory relationships. As technologies like Perturb-
ATAC continue to evolve, the availability of genetically per-
turbed scATAC-seq data will grow, further amplifying the
relevance of our approach. This method not only deepens our
understanding of intricate gene regulatory mechanisms but also
holds immense potential for advancing research in genetics and
disease pathogenesis. Our results affirm that this approach sets
a new standard for GRN inference, providing a powerful tool



for future investigations and practical applications in biological
research.
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Fig. 5. UpSet plots of shared and unique gene regulatory relationships reca-
pitulated in GRNs inferred by different methods in the TRRUST evaluation
experiments.
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Fig. 6. The proportion of gene regulatory relationships uniquely recapitulated
by the refined GRN that has been experimentally validated in relevant papers
we systematically searched.
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