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A B S T R A C T

Genome-wide association studies (GWAS) have successfully discovered a number of disease-associated genetic
variants in the past decade, providing an unprecedented opportunity for deciphering genetic basis of human
inherited diseases. However, it is still a challenging task to extract biological knowledge from the GWAS data,
due to such issues as missing heritability and weak interpretability. Indeed, the fact that the majority of dis-
covered loci fall into noncoding regions without clear links to genes has been preventing the characterization of
their functions and appealing for a sophisticated approach to bridge genetic and genomic studies. Towards this
problem, network-based prioritization of candidate genes, which performs integrated analysis of gene networks
with GWAS data, has emerged as a promising direction and attracted much attention. However, most existing
methods overlook the sparse and noisy properties of gene networks and thus may lead to suboptimal perfor-
mance. Motivated by this understanding, we proposed a novel method called REGENT for integrating multiple
gene networks with GWAS data to prioritize candidate genes for complex diseases. We leveraged a technique
called the network representation learning to embed a gene network into a compact and robust feature space,
and then designed a hierarchical statistical model to integrate features of multiple gene networks with GWAS
data for the effective inference of genes associated with a disease of interest. We applied our method to six
complex diseases and demonstrated the superior performance of REGENT over existing approaches in recovering
known disease-associated genes. We further conducted a pathway analysis and showed that the ability of
REGENT to discover disease-associated pathways. We expect to see applications of our method to a broad
spectrum of diseases for post-GWAS analysis. REGENT is freely available at https://github.com/wmmthu/
REGENT.

1. Introduction

Genome-wide association studies (GWAS), as a major approach for
deciphering genetic codes of human inherited diseases, have identified
thousands of genetic variants that are possibly associated with hun-
dreds of complex diseases over the past decade. As of July 2017, there
have been over 30,000 disease-associated single nucleotide poly-
morphisms (SNPs) deposited the GWAS Catalog database [1]. Such a
fruitful resource holds great promise to dissect genetic basis of a variety
of complex phenotypes, thereby promoting genetic medicine and pre-
cision medicine. One particular problem of substantial interest is to
identify disease-associated genes, which provide insights about under-
lying biological mechanisms as well as clues for designing appropriate

drugs [2]. However, it remains difficult to identify disease-associated
genes from GWAS data directly, due to such challenges as missing
heritability [3], weak interpretability [4], and linkage disequilibrium
[5].

Increasing sample size, though possibly improving statistical dis-
covery power, is too costly and time-consuming to be a practical so-
lution towards these challenges. One promising direction to improve
the discovery power of GWAS without the recruitment of a large sample
is network-based gene prioritization, which emerges as a powerful ap-
proach and has attracted much attention recently. For example, Lee,
et al. used a network propagation algorithm to determine the risk genes
from HumanNet, an integrated gene co-functional network [6]. Murat
et al. designed a prix fixe strategy to formulate the problem of gene
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prioritization as a combinatorial optimization problem on a gene co-
functional network and used a genetic algorithm to find approximate
solutions [7]. Greene et al. directly used connectivity patterns over
tissue-specific gene functional networks as features and trained a sup-
port vector machine (SVM) for predicting disease-associated genes [8].
These existing methods for network-based gene prioritization directly
use gene networks as inputs, holding the belief that a gene network is
reliable and informative. However, gene networks are usually sparse
and noisy, and thus a method overlooking this property may produce
suboptimal results. Besides, most existing methods only consider a
single gene network, and thus cannot make use of information stored in
such a variety of networks as protein-protein interaction networks [9],
gene co-expression networks [10] and gene regulatory networks [11].
Previous studies have shown that integrating multiple gene networks
could significantly improve the performance of gene prioritization
[12,13] and variant prioritization [14,15]. It is therefore desired to
develop a novel bioinformatics method to enable an integrated analysis
of GWAS data with multiple gene networks while at the same time
handling sparsity and noise of these networks.

Network representation learning, with examples including
DeepWalk [16] and node2vec [17], has emerged as a branch of re-
presentation learning [18] and shown successful applications in the
analysis of social networks. With a network represented in a feature
space of low dimensionality, such issues as sparsity and noise of the
network are likely to be alleviated, and hence satisfactory performance
can often be expected for such analysis tasks as node classification,
graph clustering, and link prediction. A network representation
learning method learns continuous representations, also called em-
bedding, for nodes via the optimization of a carefully designed objec-
tive function for preserving structural information in original network.
For example, nodes that are close to each other in the network or share
many common neighbours are expected to also be close in the em-
bedding space. The learned embedding can be naturally fed into stan-
dard machine learning algorithms such as support vector machines
(SVM), k-means clustering, and principal component analysis (PCA)
[19] to perform classification, clustering, and visualization, respec-
tively. These desired characteristics motivate us to apply the network
representation learning technique to network-based gene prioritization,
which remains unexplored until now.

In this paper, we proposed a novel computational method called
REGENT (integRating Embeddings of multiple GEne NeTworks) for
network-based gene prioritization. Specifically, we used the network
representation learning to learn embeddings of genes from multiple
gene networks and developed a hierarchical statistical model to in-
tegrate the learned embeddings of genes with GWAS summary data. We
applied REGENT to GWAS summary data of six complex diseases and
found our method outperformed existing methods in terms of gene
prioritization. We further conducted pathway analysis to the prioritized
genes for ulcerative colitis and coronary artery disease, and found that
our method enhanced the significance of several disease-associated
pathways. Therefore, REGENT is expected to be a useful tool for
prioritizing candidate genes from GWAS and facilitating both research
and practice of precision medicine.

2. Methods and materials

2.1. Schematic overview of REGENT

As illustrated in Fig. 1, REGENT takes GWAS summary data (i.e.
SNP p-values) of a complex phenotype of interest and multiple gene
networks as inputs, and produces inferred posterior probability of as-
sociation (PPA) between a gene and the given disease as output via
three computational steps. First, gene-level p-values are calculated by
aggregating SNP-level p-values from GWAS summary data with the
consideration of linkage disequilibrium (LD). Second, network re-
presentation learning is employed to learn embeddings of genes in each

network separately in an unsupervised manner. These embeddings are
learned by considering information from gene networks only and are
not relevant to a phenotype, and thus the learning procedure is per-
formed only once. Third, a hierarchical statistical model with an effi-
cient expectation-maximization (EM) algorithm is developed to in-
tegrate learned embeddings with gene-level p-values to infer for each
gene a posterior probability of association, which is in turn used for
gene prioritization, with genes with larger PPAs more likely to be as-
sociated with the disease.

2.2. Calculation of gene-level p-values

We use PASCAL [20] to compute gene-level p-values from GWAS
summary data. Specifically, we first perform cis-mapping for each gene
and assign a SNP to a gene if the SNP locates within 50 kb from the
gene. Then, we aggregate these SNP-level p-values into gene-level p-
values. Suppose that there are a total of N genes, and there are Ki SNPs
assigned to the i-th gene, with corresponding p-values for these SNPs
being …p p, , K1 i. Let Σi be the pairwise correlation matrix for these SNPs
derived from the 1000 Genomes Project [21]. The test statistic for gene
i is then defined as = ∑ ∼ ∑= =T z λ χi j

K
j j

K
j1

2
1 1

2i i , where = −−z pΦ (1 )j j
1 with

Φ(·) being the cumulative distribution function of the standard normal
distribution, λj the j-th eigenvalue of Σi, and χ1

2 the chi-squared dis-
tribution with one degree of freedom. With this formulation, the gene-
level p-value for gene i is then calculated as = ∑ ⩾=p λ χ TPr( )j

K
j i1 1

2i ,
which can be efficiently computed by the Davies algorithm [22].

2.3. Network representation learning for extracting gene embeddings

We use the framework proposed in node2vec [17] to perform net-
work representation learning on a gene network. Specifically, a gene
network is represented as =G V E( , ), where V is the set of nodes
(genes), and E the set of edges. The weight matrix of a gene network is
denoted as = ×wW ( )ij N N , where wij is the weight of the edge between
gene i and gene j. A gene network of N nodes is said to be sparse if the
number of edges, E| |, is far less than the number of possible edges,

−N N( 1)/2. The objective of network representation learning is to learn
a d-dimensional real-valued embedding vector ∈v Ri

d for each gene i in
the network, and the value of d is far less than N . The basic principle
underlying the network representation learning is that nearby nodes in
the network should have similar embedding vectors, which ensures the
preservation of network structure during learning. There are two main
steps in network representation learning: generating node sequences
via a graph exploration algorithm (e.g., random walk) and learning
embedding vectors using collected node sequences. Here, we use a
random walk model to generate node sequences. For a gene u in the
gene network, we simulate a l-step random walk starting from u and
collect the genes appeared in this random walk as = = …S s u s s{ , , , }l0 1 .
The i-th jump within the random walk is generated by sampling another
gene according to the probabilities of transitions, defined as:

∑
= = =−p s y s x

w
w

( | )i i
xy

y
xy

1

(1)

Thus, the probability of transiting to the next gene relies only on the
previous visited gene and edge weight between them. For each gene, we
simulate the random walk procedure r times and collect corresponding
gene sequences. Given a gene sequence, we use the skip-gram [23] to
model the conditional distributions of the surrounding genes of each
gene, as:

∑
= ∈ − ⧹+

+v v

v v
p s s t k k( | )

exp( )

exp( )
, { , ..., } {0}i t i

s
T

s

k
s
T

k

i i t

i
(2)

where ∈v Ri
d is the embedding vector of gene i, d the embedding di-

mension, and k the context size. The gene collection
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∈ − … ⧹+s t k k{ , { , , } {0}}i t is called the context of gene i. The likelihood of
data (all collected gene sequences by random walk) is defined as:

∏ ∏ ∏= +L p s s( | )
S i t

i t i
(3)

To estimate vi, we adopt the maximum likelihood principle and
minimize the negative logarithm of data likelihood, which is defined as:

∑ ∑−
= ∈

v vN i log Zmin {| ( )| ( ) }
v v i

N

i
j N i

j
T

i
,..., 1 ( )N1 (4)

where = ∑ = v vZ exp( )i j
N

i
T

j1 is the partition function for gene i and can be
efficiently approximated by negative sampling [23]. N i( ) collects genes
that appear in the contexts of gene i within any collected random walks.
Stochastic gradient descent (SGD) is used to estimate model parameters
or embedding vectors. We use the default parameters

= = = =r l d k10, 80, 128, 10 because this choice is shown to
achieve the-state-of-art performance in a variety of applications [17].
For each gene network, we perform the same procedure of network
representation learning and obtain corresponding embedding vectors of
genes in the gene network. Finally, we concatenate the embedding
vectors learned from different gene networks together to form the final
integrated embedding vector for each gene.

2.4. Statistical model for integrating gene embeddings and GWAS data

With the previous two steps done, we obtain a gene-level p-value pi
and an embedding vector ∈v Ri

md for gene i = …i N( 1, , ), where m is
the number of gene networks, d the embedding dimension, and N the
number of genes. We then develop a hierarchical statistical model to
infer associations between genes and the disease by integrating these
two pieces of information. For gene i, we assign a binary latent variable
zi to denote its association status with a given disease, where =z 1i
denotes that gene i is associated with the disease, and =z 0i denotes
that gene i is not associated. As shown in Fig. 1, we specify the gen-
erative process of gene-level p-values as:
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= ∼p z α| 1 Beta( , 1)i i 1 (7)

where = w b α αΘ { , , , }0 1 are parameters to be estimated, and
= …z i n, 1, ,i latent variables to be inferred. The usage of Beta

distribution for modelling p-values is justified by previous studies
[24,25]. EM algorithm is used to estimate the model parameters. In the
E-step, we estimate the posterior probability of the hidden variable zi
as:
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where t denotes the number of iteration, = +− − −w vσ σ b(( ) )i
t t T

i
t( 1) ( 1) ( 1)

and = + −σ x exp x( ) 1/(1 ( )) the sigmoid function. In the M-step, we
maximize the expected log-likelihood of complete data with respect to
posterior distributions of latent variables, which is defined as

∑

∑
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where = +w vσ σ b( )i
T

i . Maximizing the function Q (Θ) with respect to
α α,0 1, we obtain the update formula as
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For w b, , no closed-form update formula exist and we resort to the
Newton-Raphson method [26] for updating w b, :
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The gradient of Q (Θ) with respect to w b, and corresponding
Hessian matrix are:
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Fig. 1. Schematic overview of REGENT. The inputs consist of GWAS summary data and multiple gene networks, and the outputs are PPAs (short for posterior
probability of association) of genes. There are three steps from the input to the output, including calculation of gene-level p-values, network representation learning
on multiple gene networks, and statistical integration of embeddings and gene-level p-values.
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We alternate E-step and M-step until convergence, e.g.,
− <−

∞
−|Θ Θ | 10t t( ) ( 1) 9. Empirically, the convergence can be reached

within 100 iterations.
Nevertheless, direct incorporation of the learned embeddings does

not work in practice due to the high dimensionality of the embedding
vectors, which makes it difficult to fit the statistical model accurately.
We therefore adopt a two-step strategy to solve this problem. In the first
step, we perform supervised dimensionality reduction via a linear dis-
criminant analysis (LDA) [19] to extract low-dimensional embeddings
that are relevant to the disease of interest. In the second step, we fit the
statistical model with the reduced embeddings. Specifically, we first fit
the statistical model without embeddings and only use the intercept b in
Eq. (5), from which we obtain the estimated PPAs of all genes as

̂ = …γ i N{ , 1, , }i via Eq. (8). Using ̂ = …γ i N{ , 1, , }i as soft labels, we
apply LDA to embeddings, where the covariance matrices of between-
class and within-class are estimated as:
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where vi is the embedding vector of gene i. Then, we compute the
projection vector s as the eigenvector of −S Sw b

1 that corresponds to the
largest eigenvalue. Finally, we compute the reduced embedding for
each gene as = = …∼v s v i N, 1, ,i

T
i . These reduced embeddings are used

to fit the statistical model, in which we replace vi with ∼vi in Eq. (5). The
fitted model gives the estimation of PPAs via Eq. (8), providing a means
of gene prioritization. Genes with larger PPAs are more likely to be
associated with the disease of interest and will be ranked in topper
positions. In practice, it takes only several minutes to finish all com-
putation involved in the analysis of one individual disease, making it a
suitable tool for the accumulating GWAS data.

3. Results

3.1. Datasets

We collected four gene networks, including HumanNet (version v1)
[6], protein interaction network (PPI) from the BioGrid database (ver-
sion 3.4.147) [9], gene co-expression network from the GTEX project
(GTEX_Net for short) [10] and gene regulatory network from the EN-
CODE project (ENCODE_Net for short) [11]. Specifically, we merged all
gene co-expression networks for different tissues [10] and retained the
maximum edge weight. For all gene networks, we mapped corre-
sponding gene ID to HGNC symbol using the Ensemble Biomart [27]. As
shown in Table 1, the four gene networks vary in terms of the number
of nodes and edges, and all of them are sparse as the corresponding
edge densities are small. Note that edge weights for these gene net-
works are determined by the existing studies and are not influenced by
any GWAS data.

We collected GWAS summary data for six complex diseases, in-
cluding Parkinson’s Disease [28] (PD), Rheumatoid Arthritis [29] (RA),
Crohn’s Disease [30] (CD), Ulcerative Colitis [31] (UC), Coronary

Artery Disease [32] (CAD) and Type 2 Diabetes [33] (T2D). These
diseases belong to different types of complex diseases, such as neuro-
logical, immune-related and cardiovascular diseases. The details about
GWAS data of these diseases are shown in Table 2, including the
numbers of cases, controls, SNP genotyped and genes.

3.2. Disease-associated genes tend to be densely connected to each other in
gene networks

Using the collected datasets, including the four gene networks and
the six GWAS datasets, we explored whether the assumption underlying
network-based gene prioritization held, that is, whether disease-asso-
ciated genes tended to be densely connected to each other in the gene
networks. For a gene network and a GWAS dataset, we first sorted genes
according to their p-values in nondecreasing order. Then, we calculated
the weighted edge density of top K (K ranges from 100 to 5000 with
step size 100) genes as

=
∑

× −
< = < < =WED

w

K K( 1)/2K
i j K ij1

(19)

where wij is the edge weight between gene i and gene j. A line was
drawn by plotting WEDK against K for each pair of a gene network and
a GWAS dataset, as shown in the Fig. 2. From this figure, we observed
the clear pattern that the value of WEDK decreased as K increased,
demonstrating that genes ranked higher (with smaller p-values) had
stronger connections with each other. From this figure, we also found
that the pattern revealed by ENCODE_Net was noisier than the others,
implying that ENCODE_Net was less informative than the others. Al-
though the ground-truth of disease-associated genes was unknown, the
GWAS p-value was regarded as a good indication of the association as
these GWAS datasets were well-powered by relatively large sample size
(Table 2). Therefore, the assumption that disease-associated genes tend
to be densely connected to each other in the gene networks was vali-
dated, making it reasonable to develop methods for network-based gene
prioritization.

3.3. Gene embeddings are informative for inferring association status

We then investigated whether the learned embeddings from the four
gene networks could provide information for inferring disease-asso-
ciated genes. For each gene network, we collected the learned embed-
dings of all genes from network representation learning and evaluated

Table 1
Details about gene networks used in our study. The first column is the name of
the gene network, and the following columns record the number of nodes and
edges, average degree of nodes and edge density.

Network #Node #Edge Avg. degree Edge density

HumanNet 15,285 434,418 56.84 0.37%
PPI 16,134 305,924 37.92 0.24%
GTEX_Net 9998 1,548,622 309.79 3.09%
ENCODE_Net 19,373 532,663 54.99 0.28%

Table 2
Details about GWAS data used in our study. The first column is the disease
name, and the following columns denote the numbers of cases, controls, SNP,
and genes respectively.

Disease #Case #Control #SNP #Gene

PD 1713 3978 463,185 16,937
RA 5539 20,169 2,556,272 17,063
CD 6333 19,718 1,428,749 17,053
UC 6687 19,718 1,428,749 17,053
CAD 22,233 64,762 2,337,127 17,005
T2D 34,840 114,981 2,473,441 14,868

M. Wu et al. Methods 145 (2018) 41–50

44



the relationship between the learned embeddings and association status
of genes for a specific disease. Using the supervised dimension reduc-
tion described in Section 2.4, we obtained a one-dimensional embed-
ding score for each gene, and this score contained the compressed in-
formation from the original embedding vector that was relevant to the
disease of interest. We partitioned all genes into two groups: one group

of genes with p-values less than × −1 10 4 and the other one group of
genes with p-values greater than × −1 10 4. We then compared the dis-
tribution of the embedding scores between the two groups of genes. As
shown in Fig. 3, we found that there was obvious difference between
the two groups of genes in terms of the distribution of the embedding
scores and the difference was significant (Two-sided Wilcoxon rank sum

Fig. 2. Genes with smaller p-values connect with
each other more densely in the four gene networks. In
each subplot, lines with different colors represent
different complex diseases. The x axis denotes the
number of top genes ranked by p-values, and the y
axis is the corresponding weighted edge density. (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 3. Gene embeddings are informative for inferring disease-associated genes. Each subplot corresponds to one gene network. In each subplot, the x axis denotes
different diseases, and the y axis denotes the compressed embedding score.
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test) for each pair of disease and gene network. These observations
supported the claim that the learned embeddings is informative for
inferring disease-associated genes.

3.4. Performance of gene prioritization on the six complex diseases

We applied REGENT to the six complex diseases and validated its
effectiveness. We compared the performance of gene prioritization of
REGENT with two existing the-state-of-art methods, namely GWAB
[6,34] and NetWAS [8]. We used the same GWAS data of the six
complex diseases and the corresponding official websites of the two
methods for computation. For NetWAS, we used two versions, including
NetWAS (all), which used a non tissue-specific gene network, and
NetWAS (specific), which used a tissue-specific gene network. We fol-
lowed the step used in GWAB [34] and used the relevant tissues of these
diseases for NetWAS (specific), such as brain for Parkinson’s Disease,
bone for Rheumatoid Arthritis, intestine for Crohn’s Disease and Ul-
cerative Colitis, heart for Coronary Artery Disease and liver for Type 2
Diabetes. Because the ground-truth of disease-associated genes was
unknown, we adopted the similar strategy as GWAB and used the Dis-
GeNet database [35] as a surrogate for the ground-truth. The DisGeNet
database is a comprehensive platform for discovering disease-gene as-
sociations via integrating multiple data sources, such as OMIM [36],
GAD [37] and text mining.

To evaluate the performance of gene prioritization for a specific
disease, we calculated the number of genes annotated as disease-asso-
ciated among the top K (ranges from 0 to 1000) prioritized genes for
each method. For the same value of K , a method was said to be better
than the others if it could uncover more disease-associated genes. From
Fig. 4, we found that REGENT achieved better performance than the
other two methods. For example, REGENT uncovered 179 genes in top
1000 when applied to Crohn's Disease, while the corresponding num-
bers for NetWAS (all), NetWAS (specific) and GWAB are 105, 62, and

127 respectively. This phenomenon is also apparent for Parkinson’s
Disease, Rheumatoid Arthritis, and Ulcerative Colitis. For Coronary
Artery Disease and Type 2 Diabetes, REGENT performed similar to
GWAB, both obviously better than NetWAS (all) and NetWAS (specific).
In summary, REGENT performed the best, followed by GWAB, and
NetWAS was the last. As mentioned above, NetWAS directly uses ad-
jacency matrix of a gene network as high-dimensional features for
training SVM, which may explain its inferior performance. GWAB uses
network propagation algorithm to propagate association evidence of
genes to its neighbors, and thus it only considers local information
without considering such problems as sparsity and noise in a gene
network. Besides, both NetWAS and GWAB only utilize a single gene
network and cannot use multiple gene networks. In contrast, we use the
network representation learning to learn embeddings of genes, which
can substantially solve the problem of sparsity and noise. Besides, our
method can naturally integrate multiple gene networks.

3.5. Effectiveness of integrating multiple gene networks

We investigated the advantage of integrating multiple gene net-
works by the similar experiments described before. We applied network
representation learning to learn embeddings of genes from a single gene
network only, and we used REGENT to integrate these embeddings with
GWAS data. We then compared the performance of gene prioritization
of each individual gene network with the combined one, in which the
four gene networks were all integrated by REGENT as described before.
We adopted the same metric to measure the performance of gene
prioritization as before. As shown in Fig. 5(A), we found that by in-
tegrating multiple gene networks, REGENT could uncover more dis-
ease-associated genes than using individual gene networks alone. For
example, when applying to Crohn’s Disease, REGENT retrieved 179
disease-associated genes in top 1000 genes, while the corresponding
numbers were 164, 154, 138 and 153 for the four individual gene

Fig. 4. Performance comparison between REGENT and two existing methods (GWAB and NetWAS). The x axis denotes the number of top ranked genes and the y axis
is the corresponding number of genes annotated as disease-associated.
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networks respectively. Particularly, ENCODE_Net showed the worst
performance for five diseases, which was consistent with previous ob-
servation that ENCODE_Net was less informative. In addition, we also
evaluated the contribution of each individual gene network to the
performance of the combined model. Specifically, for each gene net-
work, we calculated the number of disease-associated genes in the top
1000 genes ranked by the REGENT that integrated the other three gene
networks. From Fig. 5(B), we found that the performance dropped
when any gene network was excluded, confirming the essential con-
tribution of each gene network to the combined model.

3.6. Identification of novel susceptibility genes and functional pathways for
inflammatory bowel disease

Patients affected by Inflammatory bowel diseases (IBD), such as
Crohn’s Disease (CD) and Ulcerative Colitis (UC), usually share symp-
toms like inflammation and ulcers of colon, rectum and other compo-
nents of the intestine system. According to a survey [38], IBD affects
approximately 1.4 million Americans, calling for molecular under-
standing and effective treatment for this disease. We applied REGENT
to existing GWAS datasets for UC [31] and CD [30], as detailed in
Table 2. From the result of UC, we found an interesting gene named
GATA3, a transcription factor belonging to the GATA family. This gene
had a p-value of × −2.42 10 4, which was not statistically significant and
was ranked at 453rd by GWAS data alone and 581st by GWAB. Using
our method, this gene was assigned a high PPA of 0.985 and was ranked
at 140th. Recently, this gene was shown to be a key regulator of T-cell
differentiation and might be involved in the disease development of UC
[39]. For CD, we found a gene named STAT1, whose p-value was

× −1.85 10 4, not statistically significant. The GWAS data alone ranked

this gene at 466th while REGENT ranked it at 61st. Several evidences
[40,41] supported the association between the gene STAT1 and CD.

We then investigated whether the prioritized genes revealed func-
tional pathways for UC. We used the top 219 genes with PPA greater
than 0.9 for pathway analysis with the tool ConsensusPathDB [42]. We
also used the top 219 genes ranked by GWAS data alone for pathway
analysis and compared REGENT with GWAS alone. As shown in Fig. 6,
using prioritized genes given by REGENT, the significance of several
pathways became more evident, such as immune system, Th17 cell
differentiation and cytokine signaling in the immune system. These
pathways are well known to be related to the immune system, which
plays a vital role in UC [43,44]. On the contrary, REGENT also reduced
the significance of some pathways, such as endothelins, arachidonic
acid metabolism, and many others, which had no strong relevance with
UC. The comparison between REGENT and the other two methods re-
vealed the similar trend, and we omitted it due to space limitation.
Therefore, our method improved the power for pathway analysis of UC,
highlighting its potential for deepening our understanding of disease
mechanism.

3.7. Identification of novel susceptibility genes and functional pathways for
coronary artery disease

Coronary artery disease (CAD) is one of the most severe heart dis-
eases, and it can affect the process of blood flowing through arteries and
eventually result in heart failure and arrhythmias. According to World
Health Organization (WHO), CAD accounts for over 15% of global
deaths (about 7 millions) in 2015, appealing for molecular under-
standing and effective treatment for this disease. We applied REGENT
to existing GWAS datasets for CAD [32], of which details were shown in

Fig. 5. The effectiveness of integrating multiple gene networks in REGENT. (A) Comparison between REGENT integrating only individual gene networks and
REGENT. (B) Comparison between REGENT removing individual gene networks and REGENT.
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Table 2. From the result of CAD, we found an interesting gene named
BCAS3, a gene that was amplified and overexpressed in breast cancer
cells. This gene had a p-value of × −1.01 10 2, which was not statistically
significant and was ranked at 729th by GWAS data alone and 403rd by
GWAB. Using our method, this gene received a high PPA of 0.949 and
was ranked at 50th by our method. Recently, this gene was shown to be
associated with CAD and showed evidence for selection and antag-
onistic pleiotropy [45].

Then, we investigated whether the prioritized genes revealed
functional pathways for CAD. We used the top 54 genes with PPA
greater than 0.9 for pathway analysis with the tool ConsensusPathDB
[42]. We also used the top 54 genes ranked by GWAS data alone for
pathway analysis and compared REGENT with GWAS alone. As shown
in Fig. 7, using prioritized genes given by REGENT, the significance of
several pathways became more evident, such as triglyceride-rich lipo-
protein particle remodelling, plasma lipoprotein particle and lipid
homeostasis. These pathways were related with levels of lipoprotein,
plasma lipoprotein, and lipid, which were previously reported to be
associated with CAD [46]. On the contrary, REGENT also reduced the
significance of some pathways, such as fucosylation, regulation of
growth, and neurotrophin signalling pathway, and many others, which
had no strong relevance with CAD. Therefore, our method improved the
power for pathway analysis of CAD, again supporting the potential of
our method for deepening our understanding of disease mechanism.

4. Discussion and conclusion

We have proposed a novel method named REGENT for network-

based gene prioritization. Our method uses the network representation
learning to learn embeddings of genes from multiple gene networks and
adopts a hierarchical statistical model to integrate the learned embed-
dings with GWAS data. Applications of our method to GWAS data of six
complex diseases have demonstrated that our method is superior to
existing methods in the identification of disease-associated genes.
Further pathway analysis has shown that our method improves the
significance of several disease-associated pathways.

The success of our method can be attributed to a combination of
several aspects. First, we realize the importance of considering the
sparse and noisy properties of gene networks and utilize the network
representation learning to alleviate this issue. Second, our method has
the capability to integrate multiple gene networks that provide different
aspects about functional relationships between genes. Third, we design
a hierarchal statistical model coupled with an efficient EM algorithm to
integrate the learned network embeddings with GWAS data. Finally, we
use supervised dimension reduction to extract useful signals from the
learned generic network embeddings, solving the problem of di-
mensionality. The major shortcoming of our method is the lack of direct
biological interpretations for the learned embeddings of genes. As
shown in our study, the learned embeddings contain the information for
inferring disease-associated genes. However, the biological meaning of
a dimension in the embedding vector is not clear. This difficulty in
interpretability is still a main challenge in the field of representation
learning and deep learning [18]. Some efforts like matching learned
convolutional filters with existing motif databases [47,48] have pro-
vided some clues for interpreting deep learning models used for DNA
sequence analysis.

Fig. 6. REGENT improves pathway analysis of ulcerative colitis. Each point in this plot represents a pathway, and the blue line denotes the line y= x. The x axis and
y axis denote the significance − −p valuelog ( )10 of each pathway using prioritized genes by GWAS only and REGENT. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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There are several directions to extend our work. First, how to in-
tegrate more gene functional networks, such as gene co-opening net-
work [49], gene semantic similarity network [50], and tissue-specific
gene regulatory network [51], would be interesting. Second, our
method only considers one disease at a time, and the joint modeling of
multiple diseases with pleiotropy [52] taken into consideration would
be interesting and may further improve discovery power. Third, there
have been some studies using traditional probabilistic models to
prioritize GWAS candidate genes [12], and how to combine the
strength of both traditional probabilistic models and network re-
presentation learning would be an interesting topic. Finally, how to
extend the network representation learning to other biological network
analysis tasks would be a valuable direction.
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