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Abstract

Motivation: Single-cell technologies play a crucial role in revolutionizing biological research over the past decade,
which strengthens our understanding in cell differentiation, development and regulation from a single-cell level
perspective. Single-cell RNA sequencing (scRNA-seq) is one of the most common single cell technologies, which
enables probing transcriptional states in thousands of cells in one experiment. Identification of cell types from
scRNA-seq measurements is a fundamental and crucial question to answer. Most previous studies directly take
gene expression as input while ignoring the comprehensive gene–gene interactions.

Results: We propose scGraph, an automatic cell identification algorithm leveraging gene interaction relationships to
enhance the performance of the cell-type identification. scGraph is based on a graph neural network to aggregate
the information of interacting genes. In a series of experiments, we demonstrate that scGraph is accurate and out-
performs eight comparison methods in the task of cell-type identification. Moreover, scGraph automatically learns
the gene interaction relationships from biological data and the pathway enrichment analysis shows consistent find-
ings with previous analysis, providing insights on the analysis of regulatory mechanism.

Availability and implementation: scGraph is freely available at https://github.com/QijinYin/scGraph and https://fig
share.com/articles/software/scGraph/17157743.

Contact: lvhairong@tsinghua.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) technology, which meas-
ured the embryo development state in a single mouse blastomere at
first, has quickly developed and greatly promoted the understanding
of biological science in the past decade. To date, the advantages of
single-cell technologies have been largely extended for measuring
high-resolution profile for thousands of individual cells in different
respects, including DNA modification, chromatin accessibility state
and gene expression (Mezger et al., 2018), which gives us a great op-
portunity for studying the trans- and cis-regulatory mechanism in a
single-cell resolution (Macaulay et al., 2017). A large-scale of public
single-cell data, especially scRNA-seq, has been rapidly accumu-
lated. Although several different scRNA-seq protocols have been
developed to measure transcriptome at a single-cell level, there still
exists unavoidable technological defects, such as technical noise

(e.g. batch effect), that might diminish the quality of the observed
data. Nevertheless, scRNA-seq data contain abundant transcrip-
tomic information, leading to a wide range of applications, such as
cell-type identification (Abdelaal et al., 2019; Ma and Pellegrini,
2020), cell development trajectory analysis (Saelens et al., 2019) and
gene regulatory analysis (Yuan and Bar-Joseph, 2019).

In single-cell analysis, dimension reduction and clustering are the
most common and crucial computational tasks before downstream
analysis, for which many approaches have been developed (Chen
et al., 2021a). Cell-type identification heavily relies on an optimal
clustering result, which is highly subjective due to the lack of
ground-truth labels. Furthermore, the clustering and labeling of cell
types of a scRNA-seq dataset are heavily dependent on the expres-
sion of cluster-specific genes and the prior knowledge of different
cell types, respectively, which requires comprehensive prior knowledge

VC The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2996

Bioinformatics, 38(11), 2022, 2996–3003

https://doi.org/10.1093/bioinformatics/btac199

Advance Access Publication Date: 8 April 2022

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/11/2996/6565313 by guest on 08 O
ctober 2024

https://orcid.org/0000-0001-5284-2259
https://orcid.org/0000-0002-9781-3360
https://orcid.org/0000-0002-9684-5643
https://orcid.org/0000-0002-7533-3753
https://github.com/QijinYin/scGraph
https://figshare.com/articles/software/scGraph/17157743
https://figshare.com/articles/software/scGraph/17157743
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac199#supplementary-data
https://academic.oup.com/


of marker genes for each cell type (Pliner et al., 2019). With the rapid
accumulation of scRNA-seq data spanning across specific tissues,
organs and even species, it is meaningful to build a computational
model to automatically identify cell types for newly sequenced cells.
Such a model can leverage information from these public datasets to
determine the cell type for individual cells, thus eliminating the issue
of subjectivity while subsequently reducing the complexity of the ana-
lysis workflow.

With plentiful annotated and publicly available scRNA-seq data-
sets, many computational methods have been developed. CHETAH
(de Kanter et al., 2019) is a cell-type identification algorithm that
assigns cell types in a hierarchical manner by correlating the queried
scRNA-seq data with references. scID (Boufea et al., 2020) identifies
transcriptionally related cell types among scRNA-seq datasets via a
linear discriminant analysis framework. SingleR (Aran et al., 2019)
assigns cellular identity for scRNA-seq based on correlating gene ex-
pression between query scRNA-seq data and reference data. The re-
cent advances in artificial intelligence has made it feasible to obtain
great performance in finding patterns in data and extract informative
high-level features (Emmert-Streib et al., 2020). An increasing amount
of researches have shown that deep learning technologies, such as
word2vec (Zeng et al., 2018), convolutional neural networks (Chen
et al., 2021b; Liu et al., 2018), long short-term memory networks (Li
et al., 2019), generative adversarial networks (Liu et al., 2019) and
deep generative neural network (Liu et al., 2021), perform exception-
ally well in bioinformatics research. In the area of scRNA-seq, there is
also a few deep learning approaches developed by pioneers. For ex-
ample, ACTINN (Ma and Pellegrini, 2020) uses a multi-layer percep-
tron (MLP) to extract the high-level features of scRNA-seq data and
then automatically identifies cell types. Besides, graph representation
learning also wildly applies to single-cell biology (Hetzel et al., 2021).
scGNN is a graph neural network aggregating cell–cell relationships
for gene imputation and cell clustering (Wang et al., 2021). scFEA is a
graph neural network leveraging the metabolic network structure to
infer the cell-wise fluxome from scRNA-seq data (Alghamdi et al.,
2021). Though many cell identification methods have been proposed,
no method is robust enough when applied to data generated from dif-
ferent pipelines (Abdelaal et al., 2019). Besides, these aforementioned
methods regard gene expression as the input feature and rarely take
the relationships among genes into consideration.

However, research has shown that the gene interactions implicated
in gene regulatory network or protein–protein interaction (PPI) net-
work are informative in the different biological contexts. For instance,
GCNN (Bigness et al., 2022) integrates long-range regulatory interac-
tions from Hi-C map to predict gene expression. DCell (Ma et al.,
2018) is a visible neural network leveraging large complexes signaling
pathways to interpretably predict cell growth with gene-disruption
genotypes as model input. Moreover, previous research had revealed
that the joint analysis of scRNA-seq data with prior gene interaction
information can lead to a meaningful understanding of data.
NetNMF-sc (Elyanow et al., 2020) is a network-regularized non-nega-
tive matrix factorization designed for scRNA-seq analysis, which
takes advantage of prior gene network to get a more meaningful low-
dimensional representation of genes. Inversely, scRNA-seq data also
contain abundant information to infer gene–gene interactions (Fiers
et al., 2018).

Motivated by the above understandings, we propose scGraph, a
graph neural network-based computational approach that takes ad-
vantage of the gene interaction network to overcome technical noise
and automatically identify cell types. By integrating gene expression
and gene interaction information, scGraph can not only be used to
identify the cell type of individual cells, but also learn crucial gene
interaction relationships from experimental data. By benchmarking
scGraph against eight state-of-the-art methods on eight datasets
across different species, i.e. Homo sapiens and Mus musculus, the
results reveal that scGraph consistently outperforms all of the base-
line methods. At last, we trained scGraph on Human Cell
Landscape (HCL) dataset (Han et al., 2020) and directly identified
cell types of another human scRNA-seq dataset with the trained
model, which demonstrated the ability of scGraph to accurately
identify cell types with reference dataset.

2 Materials and methods

2.1 scRNA-seq datasets
We collected eight publicly available datasets for benchmarking our
method. The T cells in colorectal cancer are generated from
SmartSeq2 protocol, which can observe about 23 459 genes and
640 000 read counts per cell (Zhang et al., 2018). In addition, we
collected two peripheral blood mononuclear cells (PBMCs) dataset
(Kang et al., 2018; Zheng et al., 2017), both of which are sequenc-
ing using 10x protocol. Besides, three human tissue datasets were
gathered including one pancreas dataset from Baron et al. (2016)
and two lung datasets (Lambrechts et al., 2018; Travaglini et al.,
2020). We noted that Travaglini et al. built a lung cell atlas on nor-
mal lung tissue with SmartSeq2, which allowed them to annotate
detailed cell types and Lambrechts et al. sequenced lung cancer tis-
sues with 10x protocol, in which cells are annotated at the level of
major cell type. To benchmark the performance on a large dataset
with numerous batches and complex cell types, we collected a
human cell atlas dataset from HCL Project (available at https://fig
share.com/articles/HCL_DGE_Data/7235471) and two mouse data-
sets, including a mouse visual cortex dataset [Allen Mouse Brain
(AMB) dataset] from Tasic et al. (2018) and a mouse cell atlas data-
set, i.e. Tabula Muris (TM) from Tabula Muris et al. (2018). Since
Abdelaal et al. also used Zheng’s PBMCs dataset, Baron’s pancreas
dataset, AMB and TM dataset for benchmarking, these datasets can
be directly downloaded from Zenodo (https://doi.org/10.5281/zen
odo.3357167). We summarized the information of datasets in
Supplementary Table S1.

In the data preprocessing, we first filtered out cell types/subtypes
with fewer than 10 cells, unclear annotations or annotated as out-
liers. Then, expression data of each cell is normalized by dividing it
by its total expression value and multiplying by a scale factor 106.
We assume that the gene expression read counts follow the negative
binomial distribution. Therefore, we added a pseudo count and then
applied log2 transformation for each scaled expression value. The
pseudo count is added to avoid any invalid logarithmic transform-
ation when the raw read count value is zero.

2.2 Gene interaction networks
scGraph leverages gene interaction relationship for aggregating
neighbor information for each gene and thus improving cell embed-
ding and cell identification. We collected seven different human
gene interaction networks and one mouse gene interaction network
to evaluate the performance of scGraph as different backbone net-
works. One of the most well-known gene interaction networks is the
STRING database (Szklarczyk et al., 2015), a PPI network, which
collects and integrates protein–protein association information from
multiple resources, such as literatures and experiments. HumanNet
(Hwang et al., 2019), is a human functional gene network, which
integrates diverse types of omics data by Bayesian statistics frame-
work. The HumanNet comprises a hierarchy of human gene net-
works, i.e. human-derived PPIs, co-functional links, co-citations and
interologs from other species. Specifically, we used two versions of
HumanNet, HumanNet-CF and HumanNet-PI, which comprise of
co-functional networks and PPI networks, respectively. FunCoup
(Ogris et al., 2018) are genome-wide functional association net-
works using a unique redundancy weighted Bayesian integration to
combine functional association data of 10 different types.
GeneMANIA (Franz et al., 2018) creates a combined gene network
by weighting multiplex functional genomic datasets. Besides, we col-
lected two functional similarity matrices from pgWalk (Jiang,
2015), which are derived from KEGG pathway and Gene Ontology
biological process individually. We next converted these two simi-
larity matrices to gene networks by filtering out those gene pairs
with similarity values less than a certain threshold (i.e. 0.9). These
two networks are termed as pgWalk-kegg and pgWalk-gobp separ-
ately. The detailed information of gene interaction networks used in
this study is summarized in Supplementary Table S2.

We noted that when applying a gene interaction network to a
certain dataset, only those interaction pairs for which both
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interacting genes appear in this dataset were retained and the rest of
the pairs were discarded. In other words, the number of interaction
pairs of a gene interaction network for different datasets could vary
from each other. To capture the two regulatory directions in a pair
of genes and their corresponding strengths, the gene interaction net-
work is considered to be a directed graph, so for an edge of A gene
and B gene from an undirected gene network, such as STRING PPI
network, we considered it as a pair of edges (i.e. the edge from A to
B and the edge from B to A). We additionally added pseudo self-
interaction pair of each gene to the gene interaction network in
order to aggregate information from their neighboring genes while
retaining information about the genes themselves.

2.3 Structure of scGraph
scGraph is a graph neural network, taking scRNA-seq data and
gene interaction network as model inputs to automatically predict
the cell label. scGraph, as illustrated in Figure 1, consists of three
modules: (i) a graph representation module, (ii) a feature extraction
module and (iii) a classification module. The interaction relationship
among genes can be presented in graph format spontaneously where
a graph neural network is applied for modeling such kind of rela-
tionship. In the graph convolutional layer, whereas every node rep-
resents a gene, the edge between two nodes represents the
relationship of these two corresponding genes. The graph represen-
tation module, designed as one graph convolutional layer, updates
each node by aggregating the information of its neighbor nodes. We
use a modified GraphSAGE convolutional layer (Hamilton et al.,
2017) in the graph representation module. The original update for-
mula of GraphSAGE can be represented as

hkþ1
v  r W �MEAN hk

v

n o
[ hk

u; 8u 2 N vð Þ
n o� �� �

;

where hk
v represents the k-th layer feature vector of node v, NðvÞ rep-

resents the neighbor nodes of node v, W represents the trainable
parameters and r �ð Þ is the non-linear activation function.

Since in the gene network, some hub genes, such as transcription
factors, are much more important than other genes. The importance
of the interaction relationship could vary a lot from each other.
Toward this, we designed a trainable parameter for each edge and
the formula can be represented as

hk
v  rðW �MEANðHk�1

v dðSvÞÞÞ;

where Hk�1
v is feature matrix constructed by stacking the feature

vector set hk�1
v

� �
[ hk�1

u ; 8u 2 N vð Þ
� �

where each column repre-
sents for a feature vector in the set, Sv is the edge importance score
vector for the graph convolutional layer and d is a sigmoid activa-
tion function to ensure that the edge importance scores of different
edges are scaled and comparable with each other. Here, each gene is
embedded as an 8D feature after graph convolutional operation.

In the feature extraction module, the aggregated gene features of
each gene firstly go through two linear layers with 12 and 4 hidden
nodes separately, and then are flatten and fed to a simple MLP of
two hidden layers with 256 and 64 nodes. We use the rectified linear
unit function and normalization layer after each fully connected
layer. The feature extraction module reduces the dimension of
aggregated gene features and the output of the module is not only
used as the input of the classifier module but also used for t-SNE
visualization. Finally, the classification module makes the prediction
based on the high-level features extracted by the feature extraction
module using a softmax function.

2.4 Model training
The parameters of scGraph are initialized with Kaiming initializer
(He et al., 2015). The cross-entropy loss is used for training, which
can be defined as

LCE ¼ �
1

N

XN

n¼1

XM

m¼1
ym

n � log xm
n þ 1� ym

n

� �
� log 1� xm

n

� �� 	
;

where N and M are the total samples and total cell types separately,
ym

n is 1 if the n-th sample belongs to m-th cell types otherwise ym
n is

0. And xm
n is the predicted probability of the n-th sample belonging

to m-th cell type. L1 penalization of edge importance score vector S
is also added to the final loss function with a regularization rate k,
which is 0.1. And the final loss function is L ¼ LCE þ k k S k.

We use Adam optimizer with initial settings of a learning rate
equal to 0.01, and a weight decay of 10�4. Cosine annealing with
warm restarts learning rate strategy is firstly used to initialize model
weights. Then, a learning rate strategy of reducing learning rate by a
factor of 0.1 when the F1 metric has stopped improving is used to
training the model.

Since the scRNA-seq datasets typically are unbalanced, two
strategies are used to reduce the impact of an unbalanced training
set. Firstly, weighted cross-entropy is used to assign different loss
values for the different classes for back-propagation. Then, to avoid
enormous cross-entropy weights from tiny cell types, data augmen-
tation (see Supplementary Methods) is performed on small classes to
reduce the unbalanced odds.

3 Results

3.1 scGraph outperforms baselines in automated

cell-type classification task
Firstly, we benchmarked scGraph with eight baseline methods (see
Supplementary Methods). We evaluated these models on eight data-
sets with 5-fold cross-validation in terms of mean-F1 (Table 1 and
Supplementary Fig. S1A) and accuracy (Supplementary Table S3
and Supplementary Fig. S1B). As shown in Figure 2A, scGraph con-
sistently outperforms all eight baseline methods on all of eight data-
sets. Among the eight baseline methods, ACINN and SVM are the
most robust and accurate baseline methods, which are consistent
with the previous study (Abdelaal et al., 2019). Noticeably, scGraph
is superior to ACTINN and SVM with an average 4.81% and
3.41% improvement in terms of mean F1 and with significant P-val-
ues of 3.90�10�3 on the one-side paired Wilcoxon signed-rank test
for both. Specifically, in Zheng’s PBMCs dataset, the mean F1 of
scGraph is 0.877, while those for the best three baselines (SVM,
ACTINN and SingleR) are and 0.853, 0.843 and 0.767, respective-
ly. It is worth noting that the performance improvement of scGraph
is more significant on complex cell identification datasets, such as
Zhang’s T cell dataset, which contains 20 T cells subtypes. In this
dataset, although scGraph takes more time for training, scGraph
outperforms SVM and ACTINN with 3.4% and 9.8% improvement
in terms of mean F1, respectively. Furthermore, we benchmarked
scGraph with SVM and ACTINN on a series of curated dataset with
different number of features, i.e. genes (see Supplementary
Methods). As shown in Figure 2B, scGraph outperforms SVM and
ACTINN in every dataset curated with different number of highly

Fig. 1. The schematic overview of scGraph. Expression data are aggregated by gene

network via GraphSAGE graph convolutional layer (shown in gray block) and the

latent features of genes are flattened and go through the feature extraction module,

i.e. two linear layers of which the high-level feature output is used to make the pre-

diction. f is a sub-neural network, aggr indicates aggregation function, such as sum

or mean functions. evv indicates the learnable edge weight of autologous interaction

pair and evu1
indicates the learnable edge weight between node v and its neighbor u1,

and others are similar
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variable genes, indicating the robust performance of scGraph to
handle dataset with different scale of genes.

We also benchmarked scGraph with baseline methods on two
mouse datasets, i.e. AMB and TM. To this end, the mouse PPI net-
work from STRING database is used as the backbone network for
scGraph. And scGraph still achieves the best performance against
eight baseline methods, showing that scGraph can be used in differ-
ent species with specie-specific backbone networks.

Technical noise is inherently contained in the data regardless of
scRNA-seq pipeline, which should be removed before downstream
analysis (Hwang et al., 2018). To test the ability of scGraph to ad-
dress the technical batch effect issue, we trained scGraph on a fetal
brain dataset from the HCL project, which contains four experiment
batches and six cell types. We took the high-level features of each
cell from feature extraction module of scGraph and used t-SNE

algorithm for dimension reduction and visualization. As illustrated
in Supplementary Figure S2A and B, the cells were clustered together
in the t-SNE visualization by cell types instead of by batches, indi-
cating that scGraph can greatly overcome the batch effect and can
be effectively utilized in batch effect removal.

To evaluate whether the result of scGraph is consistent with bio-
logical discoveries, we took Zhang’s T cell dataset as an illustration
(Supplementary Fig. S3). We firstly extracted high-level features for
each cell using scGraph and applied t-SNE for dimension reduction
and visualization. As shown in Figure 2C and Supplementary Figure
S3A, scGraph accurately recognized the cell types for almost all the
cells. Furthermore, we check the expression of biological markers
for each type. Taking the biomarker IL10 as an example
(Supplementary Fig. S3B), we discovered that the IL10 gene is highly
and specifically expressed in the T cell subtype with IL10 as its

Table 1. Benchmark results on eight different scRNA-seq datasets in terms of mean-F1

Zhang’s T cells Kang’s PBMCs Zheng’s PBMCs Lambrechts’s Lung Travaglini’s Lung Baron’s Pancreas AMB TM

LDA 0.757 0.633 0.556 0.478 0.838 0.94 0.858 0.873

NMC 0.722 0.753 0.527 0.369 0.809 0.836 0.949 0.745

RF 0.562 0.727 0.495 0.384 0.648 0.788 0.906 0.803

SVM 0.805 0.853 0.558 0.534 0.853 0.967 0.967 0.910

SingleR 0.746 0.767 0.517 0.268 0.794 0.953 0.920 0.809

CHETAH 0.695 0.677 0.338 0.322 0.816 0.927 0.934 0.789

scID 0.508 0.692 0.498 0.342 0.589 0.463 0.782 0.563

ACTINN 0.741 0.843 0.623 0.547 0.826 0.904 0.965 0.886

scGraph 0.839 0.877 0.681 0.596 0.861 0.969 0.976 0.921

Note: The best results for each dataset are shown in bold.

A B

D E F

C

Fig. 2. Performance benchmarking. (A) Performance comparison of eight baselines on eight scRNA-seq datasets. The x-coordinate and y-coordinate denote the performance of

a certain baseline and scGraph in terms of mean F1 in a same dataset. Points are colored by their corresponding baseline methods. A diagonal line is plotted in dash style. All

the points are on the left top side of the diagonal line, indicating scGraph outperforms all baseline methods on all datasets. (B) Performance comparison of scGraph with the

best two baseline methods, i.e. SVM and ACTINN on a series of Zhang’s T cells datasets curated by different highly variable genes. (C) T-SNE plot illustrates that the cell

embeddings generated by scGraph are clustered by ground-truth cell types on the Zhang’s T cells dataset. (D) The precision–recall curves of scGraphs with STRINGdb back-

bone networks with different thresholds. The numbers in the parentheses represent the auPRC scores. (E) is similar to (D) but scGraph with different backbone networks. (F)

Bar plot illustrates the performance of scGraph with STRINGdb backbone network and permutated STRINGdb backbone network in terms of mean F1 on five human data-

sets. (E) and (F) illustrate that scGraph achieves robust performance as long as the backbone networks are real and convincing. ‘PBMCs 1’, ‘PBMCs 2’, ‘Lung 1’ and ‘Lung 2’

indicate Kang’s PBMCs, Zheng’s PBMCs, Lambrechts’s Lung and Travaglini’s Lung dataset separately
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biomarkers. The analysis of other biomarkers, such as CD160,
CX3CR1 and CXCL13, has similar results (Supplementary Fig.
S3C–F). The analysis above indicates the great flexibility and per-
formance of scGraph in cell-type identification with scRNA-seq
data.

3.2 scGraph performs robustly across different gene

interaction networks
We firstly checked the effect of different thresholds for STRING PPI
network. We filtered the STRING network using eight thresholds so
that the top 1%, 3%, 5%, 10%, 20%, 30%, 40% and 50% of the
interaction pairs with the highest combined scores were retained, re-
spectively. Then, we evaluated the performance of the scGraph with
these eight STRING backbone networks on the Zhang’s T cell data-
set. As shown in Figure 2D and Supplementary Table S4, scGraph
archives comparable performance in terms of both mean F1 and
auPRC for the top 1–10% STRING PPI networks. But for the
thresholds >10%, we observed the mean F1 score decreases signifi-
cantly, which can be attributed to the existence of too many uncon-
vinced interaction pairs with low combined scores in the STRING
PPI network. Next, we evaluated scGraph with top 1%, 3% 5%
and 10% of STRING network on six human datasets to determine
the best threshold. As shown in Supplementary Tables S5 and S6,
the performance of scGraph using these different STRING backbone
networks is comparable in terms of mean F1 and auPRC. The stand-
ard deviation of mean F1 score of these four networks across six
human datasets is 1.23%, indicating that the performance of the
scGraph with these networks with different thresholds is robust.
Since STRING database is widely used and the top 1% STRING
network is the most convincing and condensed, we used the top 1%
of STRING network as the default backbone network.

Next, we evaluated the performance of scGraph on different
gene interaction networks as backbone network used in scGraph.
We collected four other human gene interaction networks, i.e.
HumanNet-CF, HumanNet-PI, GENMANIA and FunCoup, from
three databases. Note that we only kept the top 1% of highest scor-
ing interaction pairs for GENMANIA and FunCoup to construct
gene interaction networks respectively, as their large interaction
pairs which contain plenty of ambiguous edges. We also collected
two crafted functional networks from pgWalk, which are built
based on the functional similarity (See Materials and Methods). We
compared the performance of scGraph with different backbone net-
works on the six human datasets. As shown in Supplementary
Tables S7 and S8, scGraph achieves comparable performance with
different backbone networks. The standard deviation of scGraph
with different backbone networks across six human datasets is
0.013. And Figure 2E illustrates the performance of scGraph in dif-
ferent backbones straightforwardly in terms of precision–recall
curve on Zhang’s T cells dataset. From these results, we concluded
that scGraph is robust with different backbone networks, which can
be derived from various gene interaction databases.

For contrast, we additionally evaluated the performance of
scGraph with random backbone network to verify the effectiveness
of gene interaction network. We randomly shuffled the backbone
networks for 10 times and evaluated on different datasets. As shown
in Figure 2F, the performance of scGraph with random backbone
networks in terms of mean F1 decreases significantly with 3.78% in
average compared with those with corresponding backbone net-
work. The analysis above indicates scGraph is very robust over dif-
ferent backbone networks as long as the backbone network
implicates valid gene–gene interaction information even these net-
works differ not only in the number of nodes and edges in the net-
works, but also in the network function types.

3.3 scGraph accurately and adaptively identifies cell

types
We firstly demonstrated that the generalization ability of scGraph to
overcome not only the technical noise but also the designed perturb-
ation. scRNA-seq experiments are usually conducted with notable
differences in capturing time, equipment and even technology

platform, which could possibly introduce technical noise to the
data. To analyze the technical noise caused by different laboratories,
we collect two human pancreas scRNA-seq datasets using CEL-seq2
and SmartSeq2 protocols from different laboratories separately and
conducted a similar analysis as above. As illustrated in
Supplementary Figure S4A and D, the cells were well clustered by
cell types instead of laboratory categories, indicating that scGraph
can overcome technical noise introduced by technicians.
Furthermore, scGraph can also accurately predict cell types regard-
less of designed perturbation, which is an essential advantage for the
cell-type classifier to be widely used in different scenarios, such as
in vivo, in vitro and other stimulating conditions. To this end, we
firstly collected Kang’s PBMCs dataset, in which there are experi-
mental groups of PBMCs following exposure to the cytokine inter-
feron beta (IFN-b) along with control groups of normal PBMCs.
The experimental groups of PBMCs are exposed to the cytokine
IFN-b. These two groups of cells were expressed in significantly dif-
ferent patterns and they can also be easily separated by their experi-
mental conditions in the t-SNE plot (Supplementary Fig. S4B and E),
which is generated by the general scRNA-seq unsupervised process-
ing analysis in the original paper. We trained the scGraph on control
group of the dataset and directly make cell-type prediction on the
treatment group. We collected cell embeddings and predicted cell
types by similar analysis as above. As illustrated in Supplementary
Figure S4C and F, scGraph is able to overcome the variations in dif-
ferent experimental conditions and accurately predict the cell type
for experimental groups. Overall, scGraph can not only well address
the technical noise introduced by different scRNA-seq protocols and
different laboratories, but also overcome variants induced by
designed perturbation.

To verify whether scGraph can accurately identify cell types with
pretrained model, we collected three human pancreas datasets. We
trained the scGraph model in Baron’s pancreas dataset since this
dataset has a large library size and directly identified cell types for
the other two pancreas datasets. As shown in Figure 3, scGraph ac-
curately recognizes cell types for most of the cells both in Muraro’s
dataset (Fig. 3A) and Segerstolpe’s dataset (Fig. 3B). For instance,
scGraph precisely recovered 97.3%, 95.3%, 90.2%, 98.4% and
98.1% of alpha cells, beta cells, ductal cells, delta cells and gamma
cells for Muraro’s pancreas dataset, respectively.

To evaluate the ability of scGraph for processing a large scRNA-
seq dataset, we construct a whole human cell-type automated classi-
fication model, training on the whole HCL dataset, which including
59 human tissues and 63 cell types. We firstly trained scGraph on
this reference dataset and the confusion matrix demonstrates the
high accuracy of the scGraph model (Supplementary Fig. S5A).
Next, we validated the performance of scGraph on other standalone
human scRNA-seq datasets, assuming that they are the new
sequenced scRNA-seq datasets. If the predicted probabilities of all
cell type for a certain cell are smaller than a threshold, i.e. 0.1 in
here, scGraph would reject to make a classification. In other words,
this cell may belong to a new cell type that is not in the reference
dataset. We made cell-type predictions on Kang’s PBMC dataset by
the trained scGraph model. As shown in Supplementary Figure S5B,
almost all the cell types in the PBMC dataset are projected to correct
references. The analysis above demonstrates the utility of scGraph
in cell-type automated identification.

3.4 scGraph reveals important gene interaction

relationship
It is worth noting that scGraph not only achieves the state-of-the-art
performance but also learns the gene interaction relationship from
the edge importance score vector S. Notice that the edge importance
score vector S is updated along the model training process, once the
scGraph model finishes training, the weights of gene–gene inter-
national network are obtained. Then, we sorted the gene–gene inter-
action pair based on their edge importance score s and selected the
top unique target genes for downstream analysis.

To demonstrate that scGraph can learn consistent essential
genes, we collected five lists of top 50 target genes from five trained
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scGraph model with STRING backbone network, which are trained
from different cross-validation folds of Zhang’s T cell dataset. As
shown in Figure 4A, these five lists of essential genes are consistent
with each other with averaged overlap odd (see Supplementary
Methods) of 79.2% and consist of 93 unique genes, which is termed
as the combined essential gene list. Similar results can be conducted
for the scGraph model with HumNet-PI and pgwalk-KEGG backbone
networks separately (Supplementary Fig. S6A and B). Next, we dem-
onstrated that the essential gene lists prioritized by different backbone
networks are consistent with each other. As shown in Figure 4C, the
combined gene lists for STRING, HumNet-PI and pgwalk-KEGG
backbone networks consist of 93, 96 and 97 genes separately (see
Supplementary Table S9). The averaged overlap odd is 49.7%, while
this percentage for background is 0.003% (see Supplementary
Methods), indicating the consistency of essential gene list prioritized
by different backbone networks. This result also explains why
scGraph archived similar performance on the different backbone

networks. The analysis above demonstrated that scGraph can discover
consistent essential genes robustly from different backbone networks.

Next, we demonstrated the combined essential genes discov-
ered by scGraph aggerates information from both dataset and
backbone network. As shown in Supplementary Table S10, there
are only 6 and 13 genes overlapped with top 100 high variable
genes and top 100 high expressed genes for the 93 combined es-
sential genes derived from scGraph with STRING backbone net-
work. Similar analysis was carried out on scGraph with
HumNet-PI and pgwalk-KEGG backbone networks. These
results further support the conclusion that the discovery of the
essential gene should not only depend on the expression level or
variation level of gene but also the position of gene in the gene
interaction networks.

Furthermore, to demonstrate that the combined essential gene
list derived by scGraph is tissue-specific, we first conducted a com-
bined essential gene list of 101 essential genes on Baron’s pancreas

A

B

Fig. 3. Cell-type identification for newly sequencing cells. Sankey diagrams illustrate the cross-dataset validation performance on Muraro’s pancreas dataset (A) and

Segerstolpe’s pancreas dataset (B). The breadth of each curve indicates the number of cells

scGraph: a graph neural network-based approach to automatically identify cell types 3001

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/11/2996/6565313 by guest on 08 O
ctober 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac199#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac199#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac199#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac199#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac199#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac199#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac199#supplementary-data


dataset by similar analysis (Fig. 4B). Interestingly, there was zero
overlap between two curated gene lists from T cells dataset and
pancreas dataset. Then, we conducted pathway enrichment ana-
lysis by MetaScape (Zhou et al., 2019). The pathway enrichment
results of T cell and pancreas datasets are illustrated in Figure 4D
and Supplementary Figure S6C, respectively. For Zhang’s T cells
dataset, most of the pathways are highly related to the immune re-
sponse. The most significantly enriched GO biology process is GO:
0042110 (T cell activation) with the multi-test adjusted P-value of
9.55�10�17, which describes the change in morphology and be-
havior of a mature or immature T cell resulting from stimulus.
Reactome gene sets enrichment analysis reveals that the most sig-
nificant pathway is R-HSA-198933 (immunoregulatory interac-
tions between a lymphoid and a non-lymphoid cell) with the multi-
test adjusted P-value of 2.34�10�20, which consists of a number
of receptors and cell adhesion molecules play an essential role in
modifying the response of immune cells to self, pathogenic organ-
isms and tumor antigens, as a part of adaptive immune system. It
convincingly demonstrates the functions of these T cells, which are
sampled from colorectal tumors and adjacent normal tissues. As
for the pancreas dataset, scGraph also discovers essential
pancreas-specific pathways including Reactome pathway R-HSA-
420092 (glucagon-type ligand receptors) and GO Biological
Processes GO: 0033762 (response to glucagon). Pathway enrich-
ment analysis illustrated above sufficiently sketch out the common
attribution for corresponding datasets, indicating that scGraph ef-
ficiently leverages the gene interaction backbone network and ac-
curately learns the tissue-specific gene–gene relationships from
scRNA-seq data.

4 Discussion

We propose scGraph, a computational framework consisting of a
graph neural network for automatical cell identification. We firstly
benchmarked scGraph against eight baseline methods, including
SVM and ACTINN, on eight datasets. The results showed that
scGraph can distinguish cell types and subtypes accurately, revealing
its superior performance over comparison methods. After demon-
strating that scGraph is robust from different gene backbone net-
works, we then designed a series of experiments on different

condition datasets and illustrated the performance of scGraph, in
terms of visualization, robustness, scalability and flexibility.

To further illustrate this advantage of scGraph, we leveraged the
edge importance score vector of the scGraph model trained on certain
dataset for discovering the tissue-specific essential genes. Through a
series of experiments, we found that the essential genes discovered by
scGraph are reasonable and consistent with multiple runs. The path-
way enrichment on these essential genes also reveals that the scGraph
is capable of extracting the meaningful tissue-specific gene–gene inter-
action information from different datasets.

In this study, we illustrated that graph neural network is power-
ful to extract meaningful features and provide biological insights
based on the scRNA-seq profile and the backbone network, thus
shedding light on the understanding of gene regulatory mechanism.
Certainly, there are some aspects of our work for improvement.
First, the performance of scGraph to identify rare cell types needs to
be improved, which is important for many biological processes.
Second, the training procedure of scGraph needs to improve to re-
duce computational time. Then, it is worthwhile to embed the path-
way information or the GO ontology biological processes
information into the model, just similar to DCell, which embeds the
biological ontologies into the model to predict the growth pheno-
type and genetic interaction of yeast. It is also worth trying to assem-
ble different kinds of gene interaction networks together into one
model to promote the performance. Lastly, as the quickly develop-
ment of other single-cell technologies, it is worth to trying integrate
different omics data by graph neural network leveraging the regula-
tory network to analyze single-cell data. We leave the exploration in
these directions to future work.
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