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DC3 is a method for deconvolution and coupled
clustering from bulk and single-cell genomics data
Wanwen Zeng1,2,5, Xi Chen1,5, Zhana Duren1,5, Yong Wang3,4, Rui Jiang2* & Wing Hung Wong1*

Characterizing and interpreting heterogeneous mixtures at the cellular level is a critical

problem in genomics. Single-cell assays offer an opportunity to resolve cellular level het-

erogeneity, e.g., scRNA-seq enables single-cell expression profiling, and scATAC-seq iden-

tifies active regulatory elements. Furthermore, while scHi-C can measure the chromatin

contacts (i.e., loops) between active regulatory elements to target genes in single cells, bulk

HiChIP can measure such contacts in a higher resolution. In this work, we introduce DC3

(De-Convolution and Coupled-Clustering) as a method for the joint analysis of various bulk

and single-cell data such as HiChIP, RNA-seq and ATAC-seq from the same heterogeneous

cell population. DC3 can simultaneously identify distinct subpopulations, assign single cells to

the subpopulations (i.e., clustering) and de-convolve the bulk data into subpopulation-specific

data. The subpopulation-specific profiles of gene expression, chromatin accessibility and

enhancer-promoter contact obtained by DC3 provide a comprehensive characterization of

the gene regulatory system in each subpopulation.
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W ith the rapid development of single-cell (sc) genomics
technology, researchers are now able to study het-
erogeneous mixtures of cell populations at the single

cell level. Each type of sc-genomics experiments offers one par-
ticular aspect to delineate the heterogeneity; for example, scRNA-
seq1 enables single cell gene expression profiling, scATAC-seq2

identifies accessible chromatin regions in single cells and scHi-C3

measures chromatin contacts in the single-cell level. In many
situations, a first step in the analysis of single-cell data is clus-
tering, that is, to classify cells into the constituent subpopulations.
While clustering methods for scRNA-seq or scATAC-seq alone
have been widely studied4, 5, when different types of sc-genomics
experiments are performed on different samples from the same
heterogeneous cell population, then all samples are informative on
the underlying subpopulations, and analysis of one sample should
be informed by the analysis on another sample. Recently, Duren
et al.6 proposed a coupled NMF (coupled non-negative matrix
factorization) method to cluster cells in scRNA-seq and scATAC-
seq samples and to infer both the expression profile and accessi-
bility profile of each subpopulation. These two profiles reveal a
great deal about the subpopulation of cells: the accessible regions
identify the active regulatory elements (RE) while the expression
profiles identify actively transcribed genes7. However, even with
these two profiles, our understanding of the subpopulation-
specific regulatory networks remains incomplete if we cannot link
the active REs to their target genes. In principle, such linkages can
be obtained by measuring 3D contacts between REs and gene
promoters. In bulk sample, it is easy to measure 3D contacts
between active enhancers and gene promoters by H3K27ac
HiChIP experiments8. On the other hand, combinatorial indexing
can be used for 3D contact measurement in single cells3.

In order to take these 3D contacts into account in the study of
subpopulation-specific regulatory networks, here we introduce
DC3 as a method for the joint analysis of bulk and single cell data
under various settings of input data combinations, including: (1)
scRNA-seq, scATAC-seq and scHi-C; (2) scRNA-seq, scATAC-
seq and bulk HiChIP; (3) scRNA-seq, bulk ATAC-seq, bulk
HiChIP; (4) bulk RNA-seq, scATAC-seq, bulk HiChIP. Based on
comprehensive simulation experiments, we show that this
method can deconvolve bulk profiles into subpopulation-specific
profiles. At the same time, the subpopulation-specific profiles in
turn leads to improved coupled clustering results of single-cell
data. To assess its performance in a heterogeneous cell population
in vivo, we apply DC3 on a population obtained after four days of
retinoic-acid (RA) induced differentiation of mouse embryonic
stem cells. We validated the HiChIP profile for one of the inferred
subpopulations by showing its consistency to HiChIP data on
cells obtained by fluorescence-activated cell sorting (FACS) based
markers specific to that subpopulation. Finally, we illustrate the
value of results from DC3 by using them to derive the core
regulatory network and their downstream effectors in each of the
subpopulation in the induced differentiated mouse embryonic
stem cells.

Results
The DC3 algorithm. We formulate the joint analysis of bulk and
single cell RNA-seq, ATAC-seq and Hi-C data as an optimization
problem (Methods). For each type of single cell data, the cost
function contains a NMF term that drives clustering of the single
cells through non-negative matrix factorization (NMF). For each
bulk data type, the cost function contains a coupling term that
couples the three data types within each subpopulation by
enforcing certain relationship among them. For example, suppose
we have an input data setting with scRNA-seq, scATAC-seq and
bulk HiChIP (Fig. 1a), then the cost function is given in Fig. 1b

where the first term gives the coupling and the other two are NMF
terms. As previously described6, each NMF term drives the
decomposition of a single-cell data matrix into two factors W and
H, with columns of W representing cluster-specific profiles, and
each column of H giving the relative weights (for cluster-assign-
ment) of a particular single cell. To derive the coupling, we
examined data from various cell lines and found that HiChIP loop
counts are generally positively correlated with both gene expression
values from RNA-seq (Supplementary Fig. 1) and enhancer open-
ness from ATAC-seq (Supplementary Fig. 2). This observation
motivated us to use a linear relation between the loop count and the
product of gene expression and enhancer openness to couple the
three data types, which gives rise to first term of the cost function.
This approach can be extended to handle any combination of bulk
and single cell data, as long as at least one of the data types contains
single cell data. The general cost function and further discussions
are given in the Methods section. Note that, instead of using a pre-
defining enhancer set, DC3 defines the candidate enhancers directly
based on ATAC-seq and HiChIP data.

The main purpose of the coupling term is to improve clustering
of single cells by exploiting the statistical correlation between
different data types within each subpopulation. Although the
optimization can provide estimates of subpopulation-specific
profiles (subpopulation profiles) using the W matrix in the NMF
term, in simulation experiments we observed that when single cell
data is available, we can better estimate a subpopulation profile by
averaging the data from the single cells assigned to that
subpopulation (Methods and Supplementary Table 1). For a data
type with only bulk data, we can obtain its subpopulation profiles
by a simple method using an expression based on the already
estimated profiles of the single cell data types (Methods).
Alternatively, we may infer its subpopulation profiles based on
a Poisson model with the profiles of the single cell data types
treated as known (Methods). Compared to the simple method,
the Poisson model-based method has a better interpretation and
also performs slightly better in simulations (Supplementary Fig. 3
and Supplementary Table 2), but at the cost of a much higher
time complexity (24 h vs 3 min). For computational efficiency,
DC3 uses the simple method as default.

Evaluation of deconvolution on in silico mixture of cells. We
used deconvolution to denote the task of estimating subpopula-
tion profiles regardless of whether it was based on single cell or
bulk data. We constructed an in silico mixture of deep single cell
data (UMI~I million per cell) from two cell lines, GM12878 and
K562 (Methods) and used it to evaluate the performance of our
method under four settings of input data combinations: (1)
scRNA-seq, scATAC-seq and scHi-C; (2) scRNA-seq, scATAC-
seq and bulk HiChIP; (3) scRNA-seq, bulk ATAC-seq, bulk
HiChIP; (4) bulk RNA-seq, scATAC-seq, bulk HiChIP. Decon-
volution performance was assessed by the mean Pearson corre-
lation coefficient (mean PCC scores in 50 runs of DC3) between
the observed versus predicted subpopulation-specific profiles
in the two cell lines (Methods). DC3 was seen to perform well in
HiChIP, RNA-seq and ATAC-seq deconvolution, with mean
PCC score of 0.78– 0.95 in HiChIP deconvolution, 0.85–0.99
in RNA-seq deconvolution, 0.88–0.99 in ATAC-seq deconvolu-
tion (Table 1). As a comparison, we generated a null distribution
by randomly assigning the reads to two artificial cell lines and
repeated the whole computation (Table 1 and Supplementary
Figs. 4–9). The deconvolution accuracy of DC3 was seen to be
significantly higher than random deconvolution.

To assess the impact of sequencing depths, we further
conducted a series of dropout experiments, where site-level
dropout in both scRNA-seq, scATAC-seq, and scHi-C data were
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simulated using different dropout rates (Methods). The results
were presented in Supplementary Tables 3–5. As expected, for all
four input settings, deconvolution accuracy deteriorated with
increasing dropout rate. When only one data type is available in
single cells (input settings 3 and 4) and when the dropout rate is

high, we cannot obtain significantly better performance over
random deconvolution. On the other hand, when both RNA-seq
and ATAC-seq were available in single cells (input settings 1 and
2), DC3 deconvolution performance was still acceptable (PCC
0.82–0.93) at 80% dropout and remained significantly better than
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Fig. 1 Overview of the DC3 method. a DC3 performs joint analysis using three types of data from separate samples from the same cell population: scRNA-
seq, scATAC-seq, bulk HiChIP. E denotes the genes expression level in each cell measured in scRNA-seq; O denotes enhancer chromatin accessibilities in
each cell measured in scATAC-seq; C denotes the enhancer-promoter interactions strength (loop counts) between each gene and each enhancer
measured in bulk HiChIP. b A graphical example for simultaneously decomposing E, O, C to get the underlying clusters and cluster-specific HiChIP in K= 3

case: (1) E �W1H1k k2F : wik
1gives the mean gene expression for the i-th gene in the the k-th cluster of cells, while h1kj gives the assignment weights of the j-th

cell to the k-th cluster; (2) O�W2H2k k2F : w2
ik gives the mean chromatin accessibility for the i-th enhancer in the k-th cluster of cells, while the j-th column

of H2 gives the assignment weights of the j-th cell to the different clusters; (3) Ĉ ¼ αD� W1ΛW
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random deconvolution even at 90% dropout. It is noteworthy that
at all dropout levels (Fig. 2a), deconvolution accuracy in setting 2
(scRNA, scATAC, bulk HiChIP) was comparable to that in
setting 1 (scRNA, scATAC, scHiChIP). In the remainder of this
paper, we will focus on the further evaluation and application of
DC3 under setting 2.

Evaluation of clustering on in silico mixture of cells. In this and
subsequent sections, we assume that the input data setting is
scRNA-seq, scATAC-seq and bulk HiChIP. First, we investigated

whether DC3 would lead to improved clustering performance as
compared to clustering without the incorporation of loop data
from HiChIP. We compared DC3 to coupled NMF (which per-
formed coupled clustering without using the loop data) and NMF
(which performed clustering separately for each single-cell data
type) in in silico mixture of GM12878 and K562 cells. Fifty
independent runs were performed for each method. At each
dropout rate, we compared clustering results based on the average
(over the scRNA-seq and scATAC-seq samples) error rate in
cluster assignment. Figure 2b shows the results for DC3 and
coupled NMF (details including NMF results in Supplementary

Table 1 The deconvolution performance of DC3 with different input combinations

Input combinations HiChIP RNA-seq ATAC-seq Mean

K562 GM12878 K562 GM12878 K562 GM12878

scRNA-seq, scATAC-seq and scHi-C 0.92 ± 0.01 0.95 ± 0.01 0.98 ± 0.00 0.99 ± 0.00 0.98 ± 0.01 0.99 ± 0.01 0.97
scRNA-seq, scATAC-seq and bulk Hi-C 0.86 ± 0.00 0.95 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.98 ± 0.01 0.99 ± 0.01 0.95
scRNA-seq, bulk ATAC-seq, bulk Hi-C 0.78 ± 0.09 0.85 ± 0.08 0.95 ± 0.04 0.94 ± 0.02 0.85 ± 0.02 0.85 ± 0.02 0.87
Bulk RNA-seq, scATAC-seq, bulk Hi-C 0.71 ± 0.09 0.83 ± 0.08 0.85 ± 0.02 0.88 ± 0.03 0.88 ± 0.01 0.89 ± 0.01 0.84
Random deconvolution 0.61 ± 0.12 0.76 ± 0.10 0.76 ± 0.11 0.74 ± 0.08 0.62 ± 0.12 0.71 ± 0.08 0.70
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Fig. 2 Validation of DC3 in simulation and real data. a Performance of HiChIP deconvolution scRNA-seq and scATAC-seq for GM12878 and
K562 simulation data under different drop out rates. As a comparison, the random deconvolution results are presented. Error bars represent standard
deviation. b Performance of joint clustering for GM12878 and K562 simulation data under different drop out rates. Error bars represent standard deviation.
c FACS plot shows that in RA-day 4, 15.7 ± 3.2% cells are double positive for population-2-markers EpCAM and CD38. d Performance of HiChIP
deconvolution in RA-day 4 real data. The HiChIP profile measured from double positive cells (red triangle) is much closer to that inferred for subpopulation
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Table 6). Since the two cell types were rather distinct, with the
initial deeply sequenced mixtures (similar in depth as data from
Fluidigm), both methods performed well with no cells mis-
classified in any run. As the dropout rate increased, the two types
of cells became less distinct (Supplementary Figs. 10–13) and the
incorporation of loop data became more important. In particular,
the incorporation of loop data reduced the classification error by
more than four folds when the dropout rate is at 80% or higher,
which corresponds to a sequencing depth typical of data from
droplet-based system such as 10× (median UMI < 10,000). As a
comparison, we performed DC3 in three negative control
experiments, by keeping two of the three data sets the same and
randomly permutating the third data set (Supplementary
Tables 7–9). The performance of DC3 dropped in these negative
controls, indicating that each data type was important to clus-
tering results. These results demonstrated the potential of DC3 to
improve clustering of single cells.

Evaluation of deconvolution on experimental mixtures. When
mouse embryonic stem cells (mESC) are induced to differentiate,
several different lineages of cells may emerge, resulting in a real
experimental mixture suitable for analysis with our approach.
Specifically, embryoid bodies (EBs) are obtained from mESCs
using the hanging drop method and then differentiated further
under retinoic acid (RA) treatment (Methods). We performed
scRNA-seq, scATAC-seq and bulk HiChIP on the mixture after
4 days of RA treatment (RA-day 4). The scRNA-seq and
scATAC-seq samples have already been analyzed in our previous
study6. We wanted to assess the performance of DC3 in the joint
analysis of the three data types together. DC3 identified 3 sub-
populations (Supplementary Figs. 14, 15) together with their
subpopulation-specific loop profiles. Previous study has shown
that subpopulation 1 and subpopulation 3 were two related
subpopulations6. To isolate pure cell population, we focused on
the more distinct subpopulation (subpopulation 2) and per-
formed further experiments to validate its inferred loop profile.
To this end, we searched for subpopulation 2-specific surface
markers and identified EpCAM and CD38 as being highly
expressed in cluster 2 but not in subpopulations 1 and 3
(Methods, Supplementary Figs. 16, 17). We performed FACS
experiments by using these two markers to isolate subpopulation
2 cells. Figure 2c shows that we successfully isolated 15.7 ± 3.2%
EpCAM/CD38 double positive cells at RA-day 4 (Supplementary
Fig. 18).

Next, we performed a HiChIP experiment to obtain the loop
profile for these double positive cells. We noted that 5
independent FACS runs were necessary in order to collect
enough cells for HiChIP. From the PCA plot of the loop profiles
(Fig. 2d), we can see that the double positive sample was indeed
far closer to subpopulation 2 than subpopulation 1, 3, or the bulk
sample. The loop profile of double positive cells had a PCC of
0.7633 with that of subpopulation 2 cells (Supplementary Fig. 19),
which was far higher than its PCCs with the profiles of the other
two subpopulations (0.34 and 0.45; Supplementary Figs. 20, 21).
Together, these results validated the performance of DC3 in the
deconvolution of loop data in a real biological mixture.

DC3 improves interpretation of subpopulations. To assess
whether adding loop data will help to interpret the top genes in
each subpopulation, we carry out GO terms enrichment analysis.
First, we combined the scRNA-seq data and the loop profile for
each subpopulation to select the top 1000 subpopulation-specific
genes, and performed gene ontology (GO) terms enrichment
analysis (Methods). We compared the enrichment results to those
obtained when the selection of subpopulation-specific genes was
based on scRNA-seq data alone. Table 2 (under original) gives the
most enriched GO terms and p-values in each subpopulation.
Although both subpopulations 1 and 3 are strongly enriched in
nervous system-associated terms, subpopulation 1 is specific to
neuron development and contains terms like axonogenesis and
neuron projection guidance. Meanwhile, subpopulation 3 is
enriched in terms concerning general brain and central nervous
system development. Finally, subpopulation 2 has weaker but still
highly significant enrichments in mesodermal development terms
such as muscle structure development and cardiovascular
development.

We further investigate how the enrichment results depend on
sequencing depths by a down-sampling experiment (Methods),
and the results are shown in Table 2 (under Down-sampling).
Consistent with previous benchmark studies9, deep scRNA-seq
allows much better characterization (in the sense of high
enrichment scores) of the subpopulations than the low-depth
scRNA-seq. On the other hand, as shown by the −log10(p-value),
adding loop profile information offers an improved characteriza-
tion of the subpopulations over scRNA-seq alone at any levels of
sequencing depth. The improvement is especially large when the
sequencing depth is low. In conclusion, DC3-inferred loop
information can be used to improve the interpretation of
subpopulations of cells.

Table 2 Subpopulation-specific GO terms enrichment results

-log10(p-value) Original Down-sampling

scRNA-seq scRNA-seq+HiChIP scRNA-seq scRNA-seq+
HiChIP

Subpop 1 neuron development 37.83 37.84 16.81 24.26
axon development 26.44 27.63 11.52 17.87
axonogenesis 18.12 20.12 10.01 16.55
neuron projection guidance 16.73 17.88 7.99 16.03

Subpop 2 cardiovascular system development 9.13 11.34 4.87 11.02
vasculature development 9.76 11.75 5.59 8.58
circulatory system development 7.17 9.93 3.89 8.87
muscle structure development 5.98 8.72 2.88 7.33

Subpop 3 forebrain development 11.32 13.26 1.44 13.03
central nervous system development 10.74 14.34 1.40 11.96
brain development 9.02 13.98 2.18 11.22
head development 8.77 12.05 1.57 9.51

The enrichment p-values are transformed to −log10(p-values) and shown in the table. Original: scRNA-seq measured in SMART-seq with median ~1 million reads per cell; Down-sampling: simulated
scRNA-seq measured in Drop-seq with median UMI ~5000
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Rank Subpop 1 Subpop 2 Subpop 3

1 Isl1 Gata4 Rfx4

2 Lhx1 Sox17 Sox2

3 Hoxb5 Foxa2 Hoxa2

4 Hoxc6 Elf3 Sox3

5 Hoxb2 Hnf1b Pou3f2

6 Hoxb6 Gata6 Hoxa5

7 Lhx3 Atf3 Hoxb2

8 Bhlhe23 Klf5 Sox11

9 Neurod1 Sox7 Pax6

10 Pbx3 Isx Pou3f4

11 Hoxa2 Klf4 Hoxb6

12 Hoxc4 Klf6 Hoxb7

13 Sox11 Fos Sox9

14 Hoxb7 Pitx1 Sox21

15 Hoxb9 Nfe2l2 Hoxb5

16 Hoxd3 Jun Hoxb9

17 Hoxa5 Junb Hoxd3

18 Onecut2 Zfp42 Hoxa4

19 Pbx1 Creb3 Hoxa7

20 Hoxa4 Tcf7l2 Msx3

21 Hoxc5 Msx2 Sox4

22 Meis2 Creb3l1 Hoxc4

23 Neurog1 Xbp1 Hoxc6

24 Ascl1 Bhlhe40 Hoxa3

25 Sox4 Elf1 Pbx1

26 Hoxb4 Pitx2 Mycn

27 Hoxa3 Creb3l2 Myc

28 Hoxa7 Jund Hoxc5

29 Ebf1 Hes1 Pbx3

30 Nr2f6 Atf1 Nr2f1
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Fig. 3 Analysis of subpopulation-specific regulatory networks. a–c Scatter plots of TF expression level and motif enrichment scores in the three
subpopulations in RA-day 4. Node color represents expression specificity. Horizontal and vertical black lines indicate threshold values of motif enrichment
scores and TF expression level. Key TFs are represented by squares (see text for key TF definition). d Top 30 key TFs in each subpopulation. Ranking is
based on the product of log2(FPKM), motif enrichment score and expression specificity. e–g Dense subnetworks of key TFs plus expressed RA receptors in
subpopulations 1 to 3 (left to right). Cadet blue color nodes represent the core subnetwork, violet nodes represent the upstream subnetwork and pink
nodes represent the downstream subnetwork. Only the top 30 key TFs are shown. Source data are provided as a Source Data file
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Subpopulation accessibility, expression, and loop profiles. The
chromatin accessibility, gene expression and 3D contact profiles
provided by DC3 for each subpopulation can be used to construct
subpopulation-specific gene regulatory networks. However, typi-
cally these networks are large and complex, which makes it dif-
ficult to discern the key regulatory relationships. Therefore, we
have developed a method to extract and visualize important
subnetworks. Below, we demonstrated this method in the RA-day
4 example.

(Step 1) Identification of key regulators for each subpopulation:
We merged the scRNA-seq reads from cells in the same
subpopulation and calculated subpopulation-specific gene expres-
sion (in FPKM). Similarly, we merged the scATAC-seq cells in
each subpopulation to call open peaks and computed motif
enrichment scores (Methods). We defined the key regulators of a
subpopulation as those TFs with high expression level (FPKM >
10), high motif enrichment score (>2), and differential expression
compared to at least one of the other subpopulations (t-test,
adjusted p-value <0.01). There are 58, 42, and 71 key regulators
for subpopulations 1, 2, and 3 respectively (Fig. 3a–c, Supple-
mentary Table 10–12). We ranked the key TFs by its importance
score, defined as the product of its expression (i.e., log2 of
FPKM), expression specificity (i.e., maximum expression fold
change compared to the other two subpopulations) and motif
enrichment score. The Top 30 key regulators are shown in
Fig. 3d. For example, {Lhx1, Neurod1}, {Gata4, Sox17, Foxa2} and
{Rfx4, Sox3} are high ranking specifically in subpopulations 1, 2
and 3 respectively, while Pou3f2 and several Hox genes are high
ranking in both subpopulations 1 and 3.

(Step 2) Construction of gene regulatory networks: On each
subpopulation, we identified enhancer-target gene pairs with loop
counts greater than or equal to 2. Given an enhancer-target gene
pair, we connect it to key TFs which have both significant motif
match on the enhancer region and significant correlation with
target gene in the single cell gene expression data. This gives
14,979, 4,909 and 15,459 TF-Enhancer-Gene triplets in subpopu-
lations 1, 2, and 3 respectively. Finally, for any pair of TF and
target gene, say Ti and Gj, we compute a TF-Target score Wij as
the sum, over TF-RE-Gene triples with TF= Ti and Gene=Gj, of
the product of the motif score of Ti on the RE and the loop count
between RE and Gj. In this way, we obtained a regulatory networks
for each subpopulation, defined as the directed graph with key TFs
are nodes and TF-Target scores10 as edge weights. The networks
for the three subpopulations contain (58 nodes, 1043 edges), (42
nodes, 685 edges) and (71 nodes, 1037 edges) respectively.

(Step 3) Analysis of dense subnetwork: For each
subpopulation-specific network, we extracted its dense subnet-
work by quadratic programming (Methods). The extracted
subnetwork is seen to be significantly denser than those obtained
from random networks with same in-degree and out-degree for
each node as our network (p-value equals 0.0230, 0.0180 and
0.0320 in subpopulations 1, 2, and 3, see Methods). The dense
subnetwork was further partitioned into (i) the core subnetwork
consisting of TFs that densely cross-regulate each other to achieve
robust maintenance of the cellular state, (ii) the upstream
subnetwork consisting of TFs that may regulate the core, and
(iii) the downstream subnetwork consisting of key TFs regulated
by the core. Different downstream TFs may be involved in
different pathways or functions characteristic of the cells in the
subpopulation. Figure 3e–g present the dense subnetworks of the
three subpopulations. Downstream TFs in subpopulation 1
included Ascl1, Neurog1, Lhx3, Onecut2 and Bhlhe23. The BHLH
transcription factor Ascl1 is one of the most important factors in
neural commitment and differentiation11, and it is also necessary
for reprograming from fibroblasts to functional neurons12. Lhx3
in known to contributes to the specification of motor neuron13. In

subpopulation 2, Foxa2, Gata4, and Gata6 are in the core
subnetwork. Foxa2 is a pioneer factor important in mesendoderm
development and is known to regulate Gata414, Gata4 and Gata6
are master TFs important to heart and gut formation. Our
analysis suggests that these core TFs, together with their
downstream effectors such as Sox17, may drive differentiation
towards mesodermal and endoderm lineages. In subpopulation 3,
Rfx4 and Pou3f2 are in the core subnetwork. A novel splice
variant of Rfx4 is reported to be crucial for normal brain
development15 and Pou3f2 is involved in cognitive function as
well as adult hippocampal neurogenesis16. Downstream TFs in
subpopulation 3 included Pax6. Pax6 is important for the
maintenance of brain integrity17. We note that many Hox genes
are found in the core subnetworks of subpopulations 1 and 3,
suggesting that they are important in the maintenance of these
neural related populations. On the other hand, Lhx118 and
Neurod119 are specific to subpopulation 1 while Rfx420 and
Pax621 are specific to subpopulation 3. These regulators may play
a role in defining the differences of these two related but distinct
subpopulations.

Discussion
In summary, we developed DC3 for simultaneous deconvolution
and coupled clustering based on the joint analysis of different
combinations of bulk and single-cell level RNA-seq, ATAC-seq,
and HiChIP data. We showed that DC3 can decompose bulk
profiles into subpopulation-specific profiles and at the same time
enhance clustering performance of the single-cell data. The
subpopulation-specific HiChIP interactions are seen to lead to
improved interpretation of the subpopulations. Furthermore, we
showed that the accessibility, expression and loop profiles infer-
red by DC3 can serve as a foundation for further analyses of the
regulatory systems, such as the extraction of core subnetworks, in
a population-specific manner.

Since DC3 is an unsupervised method and the hyper-
parameters can be tuned automatically, it can be applied to
many different scenarios. For example, existing single cell
atlases22–25 usually adopt barcode-based Drop-seq experiments
(median UMI ~5000). If scRNA-seq and scATAC-seq with low
sequencing depths have already been performed in the same cell
population, then with additional simple HiChIP experiments,
DC3 can greatly improve the characterization of the different
subpopulations and their regulatory networks. As another exam-
ple, if scRNA-seq, scATAC-seq and bulk HiChIP are performed in
heterogeneous tumor cell population, DC3 can help to distinguish
the subpopulations in the mixture and identify the TFs, enhancers
and genes that are important in the subpopulations.

Finally, our optimization-framework is flexible and can be
extended easily. For example, recently Cao et al. proposed a
combinatorial indexing–based assay sci-CAR that jointly profiles
chromatin accessibility and mRNA in each of thousands of single
cells26; Lin et al.27 proposed a model-based method to infer the
subpopulations. In the future we will modify the cost function of
DC3 to incorporate data types from such emerging single cell
experiments, and incorporate the model-based method into the
inference.

Table 3 The numbers of cells in simulation data

GM12878 K562 Total

scRNA-seq 73 73 146
scATAC-seq 373 373 746
scHi-C 100 100 200
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Methods
Data preprocessing. We aligned scATAC-seq reads to reference genome mm9
and removed duplicates. MACS228 was employed to call peaks by merging reads
from all single cells and removed peaks present less than 10 cells. The final read
counts for each peak on each cell were calculated by bedtools29 intersect command.

We mapped scRNA-seq reads to mm9 by STAR30 following ENCODE31

pipeline and calculated Transcripts Per Million (TPM) by RSEM32 using
GENCODE33 vM16 annotation.

We used HiC-pro34 to process HiChIP data from raw fastq files to normalized
contact maps using reference genome mm9. Then hichipper35 was employed to
perform bias-corrected peak calling, library quality control and DNA loop calling.
We filter out the replicates that have less than 500 strong loops (greater than 5
reads). We further utilized ATAC-seq peaks to annotate loops and to select
candidate enhancer-promoter interactions.

Simulation data construction. To simulate single-cell level RNA-seq/ATAC-seq/
HiChIP data from a mixed population with two different cell types, we downloaded
the public scRNA-seq/scATAC-seq data from GM12878 and K562 and mixed
them together as a single scRNA-seq/scATAC-seq dataset; we downloaded public
bulk HiChIP data from GM12878 and K562 and down-sampled them as scHi-C
data. In detail, we downloaded scRNA-seq and scATAC-seq, and simulated scHi-C
for GM12878 and K562 separately. Then for scRNA-seq data, we computed the
data matrix Em ´ n1 where Egh denotes the expression level of the g-th gene in the h-
th cell and n1= 146 is the total number of cells from GM12878 (73) and K562 (73).
For scATAC-seq data, we computed a data matrix On ´ n2 , where Oij denotes the
degree of openness (i.e., read count) of the i-th peak in the j-th cell and n2= 746 is
the total number of cells in GM12878 (373) and K562 (373). For scHi-C data, we
computed a data matrix Cs

s ´ n3
, where Cs

ij denotes the loop counts of the i-th
interaction in the j-th cell and n3= 200 is the total number of cells in GM12878
(100) and K562 (100). The numbers of cell in simulation data are shown in Table 3.
We note that the scATAC-seq, the scRNA-seq data and the scHi-C data are not
measured in the same cell in our setting.

DC3 algorithm. We first introduce some notations for our data matrices (Fig. 1b):
(1) scRNA-seq matrix: Em×n1, where Egh denotes the expression level of the g-th
gene in the h-th cell; (2) scATAC-seq matrix: On×n2, where Oij denotes the degree
of openness (i.e., read count) of the i-th enhancer in the j-th cell; (3) HiChIP
matrix: Cm×n, where Cpq denotes the enhancer–promoter interactions strength (i.e.,
loop read counts) for the p-th gene’s promoter and the q-th enhancer at the bulk
level. To infer the pattern of gene expression, chromatin accessibility, and chro-
matin contact in each subpopulation, we formulate the following optimization
problem:

min

W1;H1;W2;H2;Λ � 0

1
2 C � αD� W1ΛW

T
2

� ��� ��2
F
þ μ1

2 E �W1H1k k2Fþ μ2
2 O�W2H2k k2F

s:t:
PK
k¼1

h1kj ¼ 1; j ¼ 1; 2; ¼ ; n1

PK
k¼1

h2kj ¼ 1; j ¼ 1; 2; ¼ ; n2

PK
k¼1

λk ¼ 1;

ð1Þ
To explain this formulation, we briefly discuss each term in the objective

function. (1) E �W1H1k k2F : A soft clustering of the scRNA-seq cells can be
obtained from a nonnegative matrix factorization E=W1H1 as follows: W1 has K
columns and H1 has K rows. The i-th column of W1 gives the mean gene
expression for the i-th cluster of cells, while the j-th column of H1 gives the
assignment weights of the j-th cell to the different clusters. (2) O�W2H2k k2F :
Similarly, clustering of cells in scATAC-seq data can be obtained from the
factorization O = W2H2. W2 also has K columns and H2 has K rows. The i-th
column of W2 gives the mean chromatin accessibility for the i-th cluster of cells,
while the j-th column of H2 gives the assignment weights of the j-th cell to different
clusters. Note that, the k-th column of W2 corresponds to the k-th column of W1,
indicating they are from the same cluster, namely the k-th cluster. (3)

C � αD� W1ΛW
T
2

� ��� ��2
F
: We decompose each enhancer-promoter loop strength

cij in the bulk sample into subpopulation-specific loop strengths, i.e.,
cij ¼

P
k λkcijk , where cijk is the loop strength in the k-th subpopulation; λk is

proportional to the size of the subpopulation; Λ is a K by K diagonal matrix [λ1, λ2,
…, λK]. Furthermore, based on the expectation that an enhancer-promoter loop
strength is positively correlated with both the accessibilities of the enhancer and the
expression values of the gene, we model cij as

cij ¼ αdij
P
k
λkw

1
ikw

2
jk ð2Þ

Here α is a scaling factor; the elements (dij) of the matrix D are indicators
selecting the enhancer-promoter pair to be modeled. Only enhancer-promoter

pairs with loop count larger than or equal to 1 are included into the optimization:

dij ¼
1; cij � 1

0; cij<1

(
ð3Þ

This leads directly to the first term in the objective function.
Finally, the objective function can be extended to handle any combination of

single cell and bulk data. The general cost function is as follows:

min 1
2 α1 Cs �W3H3k k2Fþ 1

2 α2
P
i

P
j2REi

Cði;jÞb � α1D
ði;jÞ
b

PK
k¼1

λkW
ði;kÞ
1 Wðj;kÞ

2

� �2

μ1
2 β1 Es �W1H1k k2Fþ μ1

2 β2
P
i

EðiÞb � α2
PK
k¼1

λk
P
j2REi

Wði;j;kÞ
3 Wðj;kÞ

2

 !2

μ2
2 γ1 Os �W2H2k k2Fþ μ2

2 γ2
P
j

OðjÞb � α3
PK
k¼1

λk
P
i2TGi

Wði;j;kÞ
3 Wði;kÞ

1

 !2

þ μ3
2 α1β1γ1

PK
k¼1

λk
P
i

P
j2REi

W i;j;kð Þ
3 W i;kð Þ

1 W j;kð Þ
2

ð4Þ

S ¼ fði; jÞjC i;j;:ð Þ
s > 0 orC i;jð Þ

b > 0g

Cb : Sj j ´ 1matrix

Cs : Sj j ´ n3matrix

W3 : Sj j ´Kmatrix

Wði;j;kÞ
3 : i; jð Þrepresent one row inW3

α1 ¼
0 indicate includingHiChIP bulk input

1 indicate not includingHiChIP bulk intput

	

α2 ¼
0 indicate includingHiChIP single� cell input

1 indicate not includingHiChIP single� cell intput

	

β1 ¼
0 indicate including RNA� seq bulk input

1 indicate not including RNA� seq bulk intput

	

β2 ¼
0 indicate including RNA� seq single� cell input

1 indicate not including RNA� seq single� cell intput

	

γ1 ¼
0 indicate including ATAC� seq bulk input

1 indicate not includingATAC� seq bulk intput

	

γ2 ¼
0 indicate includingATAC� seq single� cell input

1 indicate not including ATAC� seq single� cell intput

	

s:t:
XK
k¼1

hðk;jÞ1 ¼ 1; j ¼ 1; 2; ¼ ; n1

XK
k¼1

hðk;jÞ2 ¼ 1; j ¼ 1; 2; ¼ ; n2

XK
k¼1

hðk;jÞ3 ¼ 1; j ¼ 1; 2; ¼ ; n3

XK
k¼1

λk ¼ 1;

We used different α, β, γ to deal with different input combinations: (1) α1= 1,
α2= 0, β1= 1, β2= 0, γ1= 1, γ2= 0, indicates scRNA-seq, scATAC-seq and scHi-
C input; (2) α1= 0, α2= 1, β1= 1, β2= 0, γ1= 1, γ2= 0, indicates scRNA-seq,
scATAC-seq and bulk HiChIP input; (3)α1= 0, α2= 1, β1= 0, β2= 1, γ1= 1, γ2=
0, indicates bulk RNA-seq, scATAC-seq and bulk HiChIP input; (4)α1= 0, α2= 1,
β1= 1, β2= 0, γ1= 0, γ2= 1, indicates scRNA-seq, bulk ATAC-seq and bulk
HiChIP input.

Optimization algorithm. We proposed a multiplicative update algorithm to solve
the following non-convex optimization problem. Taking DC3 with scRNA-seq,
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scATAC-seq and bulk HiChIP input as example:

min

W1;H1;W2;H2;Λ � 0

1
2 C � αD� W1ΛW

T
2

� ��� ��2
F
þ μ1

2 E �W1H1k k2Fþ μ2
2 O�W2H2k k2F

s:t:
PK
k¼1

h1kj ¼ 1; j ¼ 1; 2; ¼ ; n1

PK
k¼1

h2kj ¼ 1; j ¼ 1; 2; ¼ ; n2

PK
k¼1

λk ¼ 1;

ð5Þ
Let w1

ij represent the element of the i-th row and the j-th column in matrix W1

and w2
ij , h

1
ij , h

2
ij be the corresponding elements in W2, H1 and H2. We adopted the

following update scheme and stopped the iteration when the relative error was less
than 10−4.

w1
ij  w1

ij

μ1EH
T
1 þαCW2Λ

Tð Þ
ij

μ1W1H1H
T
1 þα2D�ðW1ΛW

T
2 ÞW2Λ

Tð Þ
ij

ð6Þ

h1ij  h1ij
WT

1 Eð Þij
WT

1 W1H1ð Þij ð7Þ

w2
ij  w2

ij

μ2OH
T
2 þCTW1Λð Þij

μ2W2H2H
T
2 þDT�ðW2Λ

TWT
1 ÞW1Λð Þij ð8Þ

h2ij  h2ij
WT

2 Oð Þij
WT

2 W2H2ð Þij ð9Þ

h1ij  
h1ijP
k
h1kj

ð10Þ

h2ij  
h2ijP
k
h2kj

ð11Þ

α tr ĈT Cð Þ
tr ĈT Ĉð Þ Ĉ ¼ D� W1ΛW

T
2

� � ð12Þ

λk  
Pn1

i
h1ikþ
Pn2

i
h2ik

n1þn2
ð13Þ

Subpopulation-specific subnetwork connectivity (for hyper-parameter
selection, see below). We first applied t-test to select top 5% subpopulation-
specific genes and subpopulation-specific enhancers. Then we regarded these
subpopulation-specific genes and enhancers in each subpopulation as nodes and
formed K subpopulation-specific subnetworks. Here we defined connectivity as the
edges that fall within the given subpopulation-specific subnetwork. Suppose the
subnetwork contains n nodes and the strength of edge between node i and j is Aij.
Then the subpopulation-specific connectivity is given by the sum of Aij over all
pairs of nodes i,j. Subpopulation-specific subnetwork connectivity measures the
specificity of each subpopulation-specific subnetwork, including the specificity of
genes, enhancers, and enhancer-gene interactions.

Initialization and hyper-parameters selection. We selected hyper-parameters
μ1 and μ2 according to the connectivity of the subpopulation-specific
subnetworks (Supplementary Table 13). We first solved the optimization problem
minW1 ;H1�0 E �W1H1k k2F and minW2 ;H2�0 O�W2H2k k2F by the alternating least-
squares (ALS) algorithm with 50 different initializations using a Monte Carlo-type
approach and got the solutions for W10, H10, W20, H20, which would be used as
initializations in our optimization problem. Then we calculated

μ10 ¼ C � αD� W1ΛW
T
2

� ��� ��2
F
= E �W1H1k k2F ð14Þ

μ20 ¼ C � αD� W1ΛW
T
2

� ��� ��2
F
= O�W2H2k k2F ð15Þ

The hyper-parameter μ1 was chosen from μ10 × [100, 101, 102, 103, 104], and μ2
was chosen from μ20 × [100, 101, 102, 103, 104]. We used the sum the connectivity
of K subpopulation-specific subnetworks to select the best hyper-parameters and
chose the ones which had the highest connectivity. The number of clusters K can be
determined by a method similar to that in Brunet et al.36 (Supplementary Fig. 22).

Subpopulation profiles. For single-cell input, we calculated the mean profiles for
those cells with the same cluster labels. For example, the subpopulation gene
expression profiles are given by the columns of the matrix P1, The k-th column of
P1 is computed by averaging the single cell expression profile of the cells in cluster

K. For example, Pð�kÞ1 ¼Pj2Sk E�j= Skj j, Sk:{j|j − th cell belongs to cluster K}. The
cluster mean based subpopulation profile P1 is similar to the subpopulation profile
W1 from matrix factorization. However, the results on simulation data show that

the cluster mean based subpopulation profile have better performance in HiChIP
deconvolution than the matrix factorization-based subpopulation profile. The
computation of subpopulation profile P2 from scATAC-seq and subpopulation
profile P3 from scHi-C are similar.

For bulk data type, we can use a simple plug-in expression to obtain its
subpopulation profiles from the subpopulation profiles already obtained from
single-cell data. For example, the subpopulation HiChIP profiles P3 can be obtained
from single-cell-averaged- profiles P1 and P2by using the expression
p3ijk ¼ αdijλkp

1
ikp

2
jk .

Poisson model-based estimate for subpopulation HiChIP profiles. We also
developed a statistical model for the deconvolution of bulk HiChIP profile into
subpopulation HiChIP profiles.

In this model the observed loop count Cij, is a sum of latent loop counts, i.e.,

Cij ¼
X
k

Cijk ð16Þ

where Cijk indicates the loop counts between the i-th promoter and the j-th
enhancer in the k-th cluster.

We assume that Cijk is generated from a Poisson model

Cijk � Poisson λ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
OikOjk

p� �
ð17Þ

Oik indicates the openness of the i-th promoter in the k-th cluster, Ojk indicates
the openness of the j-th enhancer in the k-th cluster, and these openness values are
assumed to be known constants. Let

Mij ¼ Cij1; ¼ ;CijK

� �
ð18Þ

ρij ¼ ρij1; ¼ ; ρijK

� �
ð19Þ

ρijk ¼
ffiffiffiffiffiffiffiffiffi
OikOjk

pP
k

ffiffiffiffiffiffiffiffiffi
OikOjk

p ð20Þ

Then

MijjCij � Multinomial Cij; ρij

� �
ð21Þ

Let Eik be the gene expression of the i-th gene in the k-th cluster. We assume
this gene expression follows a Poisson distribution with a rate proportional to the
sum of cluster-specific HiChIP interactions involving the i-th promoter.

Eik � Poisson β
P
q
Ciqk

 !
ð22Þ

Given the two sets of observations {Cij} and {Ejk}, our task is to infer the set of
latent variables {Cijk}. We do this by iteratively computing the MAP (maximum a
posteriori) estimate of the latent multinomial variable Mij conditional on the set of
all other latent variables {Mrs:(r, s) ≠ (i,j)}. Specifically, given the current values of
{Crsk:(r, s) ≠ (i, j)} we compute the value of {Cij1, …, CijK} that maximizes the
following conditional posterior probability:

Cij

Mij

 ! QK
k¼1

ρ
Cijk

ijk e
�β

P
q≠j

CiqkþCijk

� �
β
P
q≠j

Ciqk þ Cijk

 !" #Eik
ð23Þ

Dropout simulation. Dropout usually refers to the phenomenon that an expressed
RA molecule might not be captured in a single cell. To test whether our algorithm
could still function well in the presence of dropout events, we used a Bernoulli
distribution to decide which “sites” (genes or enhancers) should be dropped in
scRNA-seq and scATAC-seq data. Zero values were introduced into the simulated
data for each gene/enhancer based on a Bernoulli distribution defined by the
dropout rate. In our experiments, we chose the dropout rate from [0, 0.5, 0.8, 0.9].

Down sampling scRNA-seq and scATAC-seq in RA day 4. To simulate dropout
based on scRNA-seq dataset from Drop-seq platform, we first down sampled each
gene’s read count or each enhancer’s read count Pij as P̂ij ¼ Pij=100, where

P̂ij � PoiðPij=100Þ, and the dropout effect was modeled as Di � Ber 1
1þPij=100�0:1
� �

(P indicates the openness matrix O or expression matrix E).

Surface markers selection. To sort the subpopulation 2 cells, we selected sub-
population 2 specific surface markers from gene expression data. We required that
the selected surface markers satisfy the following conditions: (i) Differentially
expressed between subpopulation 2 and the other subpopulations. (ii) Highly
expressed in subpopulation 2, and (iii) expression level in subpopulations 1 and 3
are less than 2. In practice, we compared the distribution of surface markers’
expression in subpopulation 2 versus the other subpopulations by t-test. We
selected the top 20 markers and further require that TPM expression in sub-
population 2 be greater than 10 and higher than in subpopulations 1 and 3.
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Performance evaluation. There are two tasks for our algorithm: (1) deconvolution
of subpopulation-specific HiChIP; (2) coupled clustering of scRNA-seq and
scATAC-seq. For deconvolution, we ran our algorithm 50 times and evaluated the
results in terms of mean Pearson Correlation Coefficient (PCC) of true
subpopulation-specific HiChIP values and the predicted values. In detail, if there
are n interactions in the bulk HiChIP data, both the true subpopulation-specific
HiChIP and the predicted subpopulation-specific HiChIP are represented using n-
dimensional vectors. Then the deconvolution performance is evaluated by calcu-
lating the PCC score between the true vector and predicted vector. For coupled
clustering, we evaluated the performance in terms of error rate of true sub-
population labels and the predicted cluster assignments. We ran our algorithm and
NMF 50 times from different initial values to calculate the mean error rate and
compared our algorithm with NMF.

Subpopulation-specific genes. We defined subpopulation-specific genes accord-
ing to its p-values from scRNA-seq and HiChIP data. For scRNA-seq, we applied a
one-tailed t-test to define the subpopulation-specific genes and obtained the
scRNA-seq p-values; For HiChIP, we first applied a one-tailed binomial test to
define subpopulation-specific interactions. To eliminate the bias of various loop
counts of interactions, we normalized the total loop counts to N (e.g., N= 10) for
each interaction and get the modified loop counts in the k-th subpopulation as nk.
The expected proportion of the interactions in each subpopulation pk is regarded as
1/K based on the assumption that each interaction is uniformly distributed in each
subpopulation. Then, we calculated p-value for the interaction in the k-th sub-
population using the binomial test in R binom.test (nk, N, pk, alternative
= “greater”). For genes with more than one interaction, we chose the most sig-
nificant p-value as the HiChIP p-value of the gene. We further combined these two
p-values for each gene using Fisher’s methods and select the top 1000
subpopulation-specific genes with the smallest combined p-values in each
subpopulation.

Motif enrichment scores. We merged the scATAC-seq cells in each subpopula-
tion to get a merged sample. On this sample, we used MACS2 to call the open
peaks. We performed motif enrichment analysis on those open peaks by Homer.
The motif enrichment score was defined by geometric mean of –log10(p-value) and
fold change.

Motif enrichment score ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� log10 pvalueð Þ ´ FoldChangep ð24Þ

GO terms selection. For each subpopulation, we ranked GO terms using motif
enrichment scores and kept the significant GO terms with scores larger than 2.
Then we removed the GO terms which were significant in all three subpopulations.
For example, GO terms cell projection morphogenesis, regulation of cellular
component movement, regulation of localization, regulation of biological quality
and etc. were significant in all three subpopulations, and we removed these GO
terms for subsequent subpopulation-specific analysis.

Dense subnetwork detection. Given a directed weighted graph (G, W), we
obtained the dense subnetwork by solving the following optimization problem:

max
P
i

P
j
Wijxiyj

s:t:xβ1 þ xβ2 þ ¼ þ xβn ¼ 1

yβ1 þ yβ2 þ ¼ þ yβn ¼ 1

xi � 0; i ¼ 1; 2; ¼ n

yi � 0; i ¼ 1; 2; ¼ n

ð25Þ

where nonzero value of xi indicates that the i-th node in graph G is included in the
subnetwork as a regulator, nonzero value of yi indicates that the node is included in
the module as a target. We chose β= 1, which leads to L1-type constraint that
promotes sparse solutions. Then, the dense subnetwork was given by the set of
nodes with nonzero xi or yi. We can further partition the dense subnetwork into the
core node C, the upstream node U and the downstream node D, defined respec-
tively as

U ¼ ijxi > 0; yi ¼ 0f g ð26Þ

C ¼ ijxi > 0; yi > 0f g ð27Þ

D ¼ ijxi ¼ 0; yi > 0f g ð28Þ
To test whether the extracted dense subnetwork is statistically significant or not,

we generated a null distribution by permuting the network. In the permutation, to
maintain the same in-degree and out-degree of each nodes of the network, we used
the switching permutation operation (selected two edge every time and switch
source and target), and switched 1000 times to generate the random network. We
generated 1000 random networks and extracted the dense subnetwork on random
networks. We calculated a p-value by comparing the optimal value from our
network with that from random networks.

Cell culture. Mouse ES cell lines R1 were obtained from American Type Culture
Collection (ATCC, Cat. no. SCRC-1036). The mESCs were first expanded on an
MEF feeder layer previously irradiated. Then, subculturing was carried out on 0.1%
bovine gelatin-coated tissue culture plates. Cells were propagated in mESC medium
consisting of Knockout DMEM supplemented with 15% knockout serum repla-
cement, 100 μM nonessential amino acids, 0.5 mM beta-mercaptoethanol, 2 mM
GlutaMax, and 100 U/mL Penicillin-Streptomycin with the addition of 1000 U/mL
of LIF (ESGRO, Millipore).

Cell differentiation. mESCs were differentiated using the hanging drop method37.
Trypsinized cells were suspended in differentiation medium (mESC medium
without LIF) to a concentration of 50,000 cells/ml. 20 μl drops (~1000 cells) were
then placed on the lid of a bacterial plate and the lid was upside down. After 48 h
incubation, Embryoid bodies (EBs) formed at the bottom of the drops were col-
lected and placed in the well of a 6-well ultra-low attachment plate with fresh
differentiation medium containing 0.5 μM retinoic acid (RA) for up to 4 days, with
the medium being changed daily.

HiChIP. We followed the HiChIP protocol published by Mumbach et al.37, using
antibody to H3K27ac (Abcam, ab4729) with the following modifications. The EBs
were first treated with StemPro Accutase Cell Dissociation Reagent (Thermo
Fisher) at 37 °C for 10–15 min with pipetting. Approximately one million cells were
crosslinked with freshly prepared 1% formaldehyde. The pellet was then resus-
pended in 500 μl of ice-cold Hi-C Lysis buffer. After digestion with 25 U (5 μl of
5U/μl) MboI restriction enzyme and ligation, the nuclear pellet was brought up to
880 μl of Nuclear Lysis Buffer. Samples were sheared using a Covaris E220 using
the following parameters: fill level= 10, duty cycle= 5, PIP= 140, cycles/burst=
200, time= 2 min and then clarified by centrifugation for 15 min at 16,100 × g at
4 °C. The samples were precleared with 6 μl Dynabeads Protein A (Thermo Fisher)
at 4 °C for 1 h. We then added 2.5 μg of antibody to H3K27ac, and captured the
chromatin-antibody complex with 6 μl of Dynabeads Protein A. Approximately
2–4 ng of ChIP DNA was obtained following Qubit quantification. The amount of
Tn5 used and number of PCR cycles performed were based on the post-ChIP Qubit
amounts, as described in the HiChIP protocol37. The library was sequenced on
Illumina NextSeq 500 with 75 bp paired-end reads. Total 13 million cells were used
in HiChIP experiment.

Fluorescence-activated cell sorting (FACS). The EBs treated with RA for 4 days
were trypsinized with 1 ml StemPro Accutase Cell Dissociation Reagent (Thermo
Fisher) at 37 °C for 10–15 min with pipetting. Once EBs got dissociated, 4 ml of
Flow Cytometry Staining Buffer (Invitrogen, Cat. no. 00-4222) was add to the cell
sample. The single cells were obtained by filtering twice with 40 μm cell strainer.
After centrifuge at 500 × g for 4 min, the supernatant was removed and cells were
resuspended in 500–700 μl of Flow Cytometry Staining Buffer to obtain the final
concentration of 4 × 107 cells/ml. 100 μl cells were used as unstained negative
control cells for FACS analysis. The remaining cells were distributed at 100 μl per
tube (~4 × 106 cells) into Falcon® 12 × 75 mm round-bottom polystyrene test tube
(Thermo Scientific), 100 μl per tube. To block non-specific Fc-mediated interac-
tions, all tubes were first pre-incubated with 0.5 μg of Anti-Mouse CD16/32 anti-
body (1:40 dilution, Invitrogen, Cat. no. 14-0161) for 15 min at 4 °C. Then 0.125 μg
PE-Cy7-labeled EpCAM (1:160 dilution, Invitrogen, Cat. no. 25-5791-80) and
0.1 μg PE-labeled CD38 (1:200 dilution, Invitrogen, Cat. no. 12-0381-82) were
added to the tubes. After incubation for at least 30 min on ice, the cells were
washed with 2 ml Flow Cytometry Staining Buffer+ 1 mM EDTA to prevent cell
adhesion. The cells were spin down at 500 × g for 5 min at room temperature and
the wash step was repeated twice. The final cells were resuspended in 200 μl of Flow
Cytometry Staining Buffer+ 1 mM EDTA for FACS analysis. As compensation
controls, 1 drop of UltraComp eBeads (Invitrogen, Cat. no. 01-2222) was added to
three empty 12 × 75 mm round bottom test tubes, followed by adding 0.125 μg
PE-Cy7-labeled EpCAM (labeled as PE-Cy7 only compensation beads), 0.1 μg
PE-labeled CD38 (labeled as PE only compensation beads), or no antibody (labeled
as no stain compensation beads). After mixing well by flicking, the tubes were
incubated on ice for 20 min, followed by washing with 2 ml of Flow Cytometry
Staining Buffer twice. After removing supernatant, 200 μl from each tube was used
as compensation controls for FACS analysis. Five independent experiments were
performed for FACS analysis, each time we obtained approximately 700,000
EpCAM and CD38 double positive cells. Those cells were collected in 15 ml conical
tube, then the cells were spin down and crosslinked with freshly prepared 1%
formaldehyde based on the HiChIP protocol37. After crosslinking, the cells were
ready for the following HiChIP analysis.

Software availability. DC3 is implemented in Python 2.7 and freely available at
https://github.com/SUwonglab/DC3.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Data availability
The HiChIP data that support the findings of this study have been deposited in Gene
Expression Omnibus (GEO) with the accession code GSE127807. The single-cell data
that support the finding of this study are available in GEO with the accession code
GSE115968 and GSE107651. All other relevant data supporting the key findings of this
study are available within the article and its Supplementary Information files or from the
corresponding authors upon reasonable request. The source data underlying Fig. 2a, b
and 3 are provided as a Source Data file. A reporting summary for this Article is available
as a Supplementary Information file.
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