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Abstract

Motivation: Interactions among cis-regulatory elements such as enhancers and promoters are

main driving forces shaping context-specific chromatin structure and gene expression. Although

there have been computational methods for predicting gene expression from genomic and epige-

nomic information, most of them neglect long-range enhancer–promoter interactions, due to the

difficulty in precisely linking regulatory enhancers to target genes. Recently, HiChIP, a novel high-

throughput experimental approach, has generated comprehensive data on high-resolution interac-

tions between promoters and distal enhancers. Moreover, plenty of studies suggest that deep

learning achieves state-of-the-art performance in epigenomic signal prediction, and thus promot-

ing the understanding of regulatory elements. In consideration of these two factors, we integrate

proximal promoter sequences and HiChIP distal enhancer–promoter interactions to accurately pre-

dict gene expression.

Results: We propose DeepExpression, a densely connected convolutional neural network, to pre-

dict gene expression using both promoter sequences and enhancer–promoter interactions. We

demonstrate that our model consistently outperforms baseline methods, not only in the classifica-

tion of binary gene expression status but also in regression of continuous gene expression levels,

in both cross-validation experiments and cross-cell line predictions. We show that the sequential

promoter information is more informative than the experimental enhancer information; mean-

while, the enhancer–promoter interactions within 6100 kbp around the TSS of a gene are most

beneficial. We finally visualize motifs in both promoter and enhancer regions and show the match

of identified sequence signatures with known motifs. We expect to see a wide spectrum of applica-

tions using HiChIP data in deciphering the mechanism of gene regulation.

Availability and implementation: DeepExpression is freely available at https://github.com/wanwen

zeng/DeepExpression.
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1 Introduction

Gene regulation, as one of the fundamental problems in biology,

explains how different types of cells in the human body emerge from

the identical information encoded by the genome (Ozbudak et al.,

2002). The transcription of a gene is an extremely intricate process

that requires a complex set of interactions among trans proteins and

cis DNA sequences (Maston et al., 2006). The regulation of this pro-

cess is accomplished in large part by promoters and enhancers,

which are DNA sequences containing multiple binding sites for a

variety of transcription factors (TFs) (Yao et al., 2015). Enhancers

can activate transcription independent of their location, distance, or

orientation with respect to the promoters of genes (Heinz et al.,

2013). Therefore, ever since the emergence of high-throughput

experiments for quantifying gene expression, computational biolo-

gists have long been interested in how well gene expression can be

inferred by TFs and regulatory elements (Rockman and Kruglyak,

2006), for deciphering the mechanism of gene regulation.

In computational studies of gene regulation (Lee and Young,

2013), various experimental data related to one-dimensional (1D)

epigenomic signals, including TFs binding (Li et al., 2014a,b), histo-

nes modification (Karlic et al., 2010) and chromatin accessibility

(Duren et al., 2017), are taken as features to predict gene expression.

These methods mainly fall into two categories. The first class of

methods predict whether gene expression level is high or low under

a binary classification formulation. For example, DeepChrome

(Singh et al., 2016) used five histone markers in promoter regions

with a convolutional neural network (CNN) to predict gene expres-

sion. The second class of methods infer continuous gene expression

levels under a regression framework and thus can provide quantita-

tive predictions. For example, Ouyang et al. used ChIP-Seq data of

12 TFs in mouse embryonic stem cells (mESC) with a linear regres-

sion model to predict gene expression (Ouyang et al., 2009). Karli�c

et al. collected nineteen histones modification in promoter regions in

mESC to regress gene expression (Karlic et al., 2010). Dong et al.

used twelve histone modification markers and chromatin accessibil-

ity in promoter regions with a two-step model for gene expression

prediction (Dong et al., 2012). However, these methods have some

limitations. First, they never explicitly take enhancers and three-

dimensional (3D) enhancer–promoter interactions into consider-

ation thus far, probably due to both the difficulty in accurately link-

ing enhancers to their target genes and the uncertainty of how

strong these interactions will affect the gene expression (Mora et al.,

2015). Second, most of these methods collect several specific histone

markers’ and TFs’ ChIP-seq data. Therefore, they are limited by the

heavy data demand and hard to be generalized across different cell

lines. Third, these methods either predict gene expression as binary

classification problem or infer gene expression level as the regression

problem. Few of them could handle both situations.

The recent development of HiChIP (Mumbach et al., 2016), a

high-throughput experimental technique for sensitive and efficient

analysis of protein-centric chromosome conformation, holds the

promise to capture chromatin loops with high sensitivity and specifi-

city. Compared with Hi-C (Belton et al., 2012) and chromatin inter-

action analysis by paired-end tag sequencing (ChIA-PET) (Li et al.,

2014a,b), HiChIP is able to measure protein-centric chromatin con-

formation in a rapid, efficient, technically simplified and high-

resolution way. Among existing HiChIP studies, two of them stand

out to show the ability of HiChIP in identifying enhancer–promoter

interactions. First, Mumbach et al. evaluated H3K27ac, an enhan-

cer- and promoter-associated mark, as a candidate factor to select-

ively interrogate enhancer–promoter interactions across the genome

(Mumbach et al., 2017). Second, Weintraub et al. found the binding

of YY1 activated enhancers and promoter-proximal elements and

formed dimers to facilitate the interaction of these DNA elements

(Weintraub et al., 2017). Therefore, HiChIP experiments of

H3K27ac and YY1 have been developed to identify high-confidence

3D chromatin loops located around enhancer–promoter interac-

tions. These datasets provide valuable raw and general materials for

us to study the regulatory functions of enhancer–promoter interac-

tions on gene expression.

Besides the rapid progress in biological experiments, recently,

deep learning techniques have achieved the state-of-the-art perform-

ance on many bioinformatics applications such as regulatory site

identification (Alipanahi, 2015) and biomedical image classification

(Krizhevsky et al., 2017). A deep learning model automatically

learns a complex nonlinear function that maps inputs onto outputs,

eliminating the need to use hand-crafted features or rules. In bio-

informatics, CNNs have been used to predict regulatory elements

(Min et al., 2017a, b), chromatin accessibility (Liu et al., 2018) and

epigenetic states of a DNA fragment (Min et al., 2017a, b; Zhou

and Troyanskaya, 2015), as well as to explain functional implica-

tions of genetic variants (Zhou and Troyanskaya, 2015).

Inspired by the promising HiChIP experiments and the advanced

deep learning techniques, we introduce DeepExpression, a deep

learning framework to model gene expression, with consideration of

enhancers, promoters and their interactions. For distal enhancers,

we adopt the state-of-the-art high-resolution 3D HiChIP experi-

ments as features. For proximal promoters, we apply a recently

developed deep learning model, called densely connected convolu-

tion neural networks, to extract epigenomic features in promoter

regions. Cross-validation and cross-cell line prediction experiments

show that DeepExpression consistently outperforms several baseline

methods not only in the classification of binary gene expression sta-

tus but also in the regression of continuous gene expression levels.

Model ablation analysis indicates that both the promoter informa-

tion and enhancer information are informative for gene expression

prediction. Furthermore, through a visualization strategy, we show

that DeepExpression successfully captures sequence motifs in both

promoter and enhancer regions, which are matched in the JASPAR

database (Khan et al., 2018).

2 Materials and methods

2.1 Data collection and preprocessing
We collected HiChIP data of H3K27ac for mESC and identified cor-

responding RNA-seq data (Weintraub et al., 2017). We collected

HiChIP data of YY1 for the human HCT116, Jurkat and K562 cell

lines (Weintraub et al., 2017) and identified corresponding RNA-

seq data from the ENCODE project (Consortium, 2012). We

extracted DNA fragments of 2000 base pairs (bp) around

Transcription Start Site (TSS) of a gene as its promoter region. The

summary of the data is shown in Supplementary Table S1.

We followed the preprocessing pipeline described in Weintraub

et al. (2017) to deal with RNA-seq data and HiChIP data

(Supplementary Methods). Gene expression levels were calculated

by applying a logarithmic transformation of base 10 to gene-level

counts; after adding a pseudocount of a ða ¼ 1Þ, and then quantile

normalized across samples. For HiChIP data, we followed

Weintraub et al. to divide whole genome DNA sequences into bins

of length 5 kbp. To adjust for different sequencing depths, we divide

interaction counts nijk for interaction between bin i and bin j in sam-

ple k by the total read count of the sample Nk and then scale the
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result by multiplying the minimum read count of all samples N.

After this procedure, the raw count nijk for interaction between bin i

and bin j of sample k was converted into a normalized read count

~nijk ¼ nijk=Nk �N.

Normalized interaction counts ~nijk from a total of n replicate

samples were averaged and then logarithmic transformed with base

2 after adding a pseudocount of b ð¼ 1Þ to characterize the inter-

action affinity of an interaction in a cell line. The value of HiChIP

interaction signal between bin i and bin j is therefore

hij ¼ log2 1þ 1

n

Xn

k¼1

~nijk

 !
:

For each TSS in a specific binp, we extracted HiChIP interactions

signals 61000 kbp (binp�200, binp�199,. . ., binpþ200) around binp.

Each bin includes adjacent positions of 5 kbp flanking bin p. Then

for each gene, the HiChIP interaction feature is a 400-dimensional

real value vector and each dimension represents HiChIP long-range

enhancer–promoter interactions signal hpq between the specific

binq; q 2 p� 200;p� 199; . . . ; pþ 200ð Þ and TSS-located binp.

2.2 Design of DeepExpression
As illustrated in Figure 1, DeepExpression consists of three modules.

First, a proximal promoter module is used to extract features from

DNA sequences in promoter regions. Second, a distal enhancer–pro-

moter interaction module is used to extract features of HiChiP en-

hancer–promoter interactions signals. Finally, a joint module

integrates the outputs of the above two modules to produce a pre-

dicted gene expression signal.

2.2.1 Proximal promoter module as a densely connected

convolutional neural network

The proximal promoter module consists of three main components:

a one-hot encoding input layer, three densely connected convolution

blocks and three fully connected layers.

The one-hot encoding layer converts a DNA fragment into a nu-

merical representation for downstream processing. It encodes the

nucleotide in each position as a four-dimensional one-hot binary

vector, in which each element represents one type of nucleotide: A,

C, G and T. The encoding layer then concatenates the binary vectors

into a 4-by-2000 binary matrix, to represent the whole 2000-bp tar-

get sequence.

The densely connected convolution blocks automatically extract

features for an encoded DNA fragment. Recent advances in deep

learning have shown that a classical convolutional neural network

usually has hundreds of thousands of parameters involved, and thus

often results in severe overfitting problem on tasks with small data-

sets (Srivastava et al., 2014). Hence, a densely connected convolu-

tion network (Huang et al., 2017) was proposed to utilize

parameters more efficiently and avoid the overfitting problem,

which connects all layers directly with each other. As schematically

illustrated in Figure 1, in a block consists of L (L¼4) convolution

layers, the input of the lth layer is the concatenation of the feature-

maps produced by all the preceding layers 0; . . . ; l � 1, as

xl ¼ Hl x0;x1; . . . ;xl�1½ �ð Þ

where Hl denotes the concatenation operation. Meanwhile, the

feature-maps of the lth layer are passed on to all L� l subsequent

layers. This introduces LðLþ 1Þ=2 connections in an L-layer net-

work, instead of just L, as in a traditional architecture of convolu-

tional neural networks.

The convolution operation could be formulated as

Conv Xð Þik ¼ Relu
XM�1

m¼0

XN�1

n¼0

wk
mnxiþm;n

 !

where X is the input matrix, M is the size of the sliding window, N

is the number of input channels, and Wk ¼ wk
mn

� �
M�N is the weight

matrix of the kth convolution kernel with size M�N. In the first

convolution layer, N is equal to 4. This first convolution process is

equivalent to scanning a position weight matrix (PWM) across the

target sequence. In the other convolution layers, N is equal to the

total number of convolutional kernels of all the preceding layers.

The convolution layer then applies the rectified linear unit (ReLU)

nonlinear function as

ReluðxÞ ¼ max 0;xð Þ

The pooling layer computes the maximum in each of the non-

overlapping windows of size M, providing invariance to local shifts

and reducing the number of parameters.

Fig. 1. The graphical illustration of DeepExpression. First, a sequential promoter module is pre-trained to extract features from the input promoter regions.

Second, an experimental HiChIP enhancer–promoter interactions module is adopted to fine-tune DeepExpression. Finally, a joint module integrates the outputs

of the promoter and enhancer modules to predict the gene expression
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Pool Xð Þik ¼ max xiM;k;xiMþ1;k; . . . ; xiMþM;kð Þ

Three fully connected layers with 80, 40 and 40 units, respective-

ly, performs linear transformations of the outputs of the previous

layer, and applies the rectified linear unit nonlinear function.

Finally, the proximal promoter module transforms each sequential

input to a 40-dimensional real vector.

2.2.2 Distal enhancer–promoter interaction module as a

feedforward neural network

The distal enhancer–promoter interaction module receives 400-

dimensional HiChIP enhancer–promoter interactions signals as

input. It uses two fully connected layers with 80 and 40 units to

transform the 400-dimensional numeric enhancer–promoter inter-

action strength input to a 40-dimensional real-valued feature vector.

2.2.3 Joint expression prediction module as a feedforward neural

network

The joint module integrates different features from both the prox-

imal promoter and distal enhancer modules to predict gene expres-

sion. We merge outputs of these two modules to form a feedforward

neural network. For binary classification model, we use a softmax

function to produce a probability output as fiðzÞ¼ ezi=
P

je
zj , where

fi zð Þ is the predicted probability that the input gene belongs to class

i. For continuous regression model, we modify the output layer by

replacing the softmax layer with a linear transformation layer.

2.3 Training of DeepExpression
The detailed selection of different network structure and hyper-

parameters combinations in enhancer–promoter interactions module

are provided in Supplementary Methods. After choosing the net-

work structure, we trained the proposed model in a two-step ap-

proach. First, in a pre-training step, we optimized the cross-entropy

loss in the classification model or the mean squared error loss in the

regression model, without the distal enhancer–promoter interaction

module. We used the RMSprop (Ruder, 2016) optimizer with a

batch size of 4 and used dropout with a 0.5 dropout rate for model

regularization. We also applied the early stopping strategy (Erhan

et al., 2010) with the maximum number of iterations set as 60, and

it would stop training after 5 epochs of unimproved loss on the val-

idation set. We denote the model trained in this step as

DeepExpression-seq. Second, in a fine-tuning step (Liu et al., 2015),

we incorporated the enhancer–promoter interaction module before

the joint output module. For fine-tuning, we initialized the promoter

module using the DeepExpression-seq model and then optimized

loss function on the whole network. We implemented our method

by Keras, a deep learning library for Theano and Tensorflow. We

used Theano as the backend, while the Tensorflow backend also

generated very close results through our testing. We used the high-

performance NVIDIA Tesla K80 GPU for model training.

We also tried to train both modules simultaneously, instead of

using pre-training and fine-tuning steps separately. We compare the

performance of these two strategies in Supplementary Table S2. We

could observe that, by fine-tuning, DeepExpression could be trained

more effectively and needed fewer iterations to converge. Besides,

using a two-step training strategy, for cell lines without HiChIP

experiments, we could still derive a DeepExpreesion-seq model only

using sequential information.

2.4 Evaluation of DeepExpression
We adopted multi-fold cross-validation experiments to evaluate our

model. Taking 10-fold as an example, we randomly split each data-

set into ten strictly non-overlapping groups. For each run, we used

nine groups to train our model and the rest one as for testing. Data

of the nine groups was further split as a training set and a validation

set with ratio 0.8:0.1. The training set was used to adjust weights in

the network, and the validation set was used for early stopping to

avoid overfitting.

To validate the generalization ability of DeepExpression, we fur-

ther adopt cross-cell line validation and independent validation. For

cross-cell line validation, we trained our model in one single cell line

and predicted in another cell line. For independent validation, for

each cell line, we used the independently trained regression models

of the other cell lines to make predictions, and then averaged over

the resulting regression values to obtain a final regression value for a

test gene.

2.5 Comparison with baseline machine learning models
To evaluate the performance of DeepExpression, we implemented

three baseline methods for classification (logistic regression, SVM

and random forest) and three methods for regression (linear regres-

sion, Lasso regression and random forest regression). All the meth-

ods took both sequential and experimental data as input in accord

with DeepExpression. For sequence data, we split the sequence of a

DNA fragment into k-mers in a sliding window fashion with stride

of 1 bp (k ¼ 6). For example, for a promoter with 2000 bp length,

we will have 1995 6-mers. Then we represent each enhancer se-

quence with corresponding counts for each 6-mer using a vector

with dimension equal to 4096 (46Þ. For experimental data, we take

signals (loop counts in HiChIP experiments) for bins to form an in-

put vector with dimension equal to 400. Then we combine these

two vectors together and run the baseline methods. We performed

an internal 10-fold cross-validation experiment for model selection

among regularization parameter and hyper-parameter configura-

tions. The detail of model selection is provided in Supplementary

Methods. For those gene expression prediction methods that we

mentioned in the introduction section, we could not compare our

method with them in all our cell lines, since some of their features

are not available in some cell lines. Specifically, DeepChrome used 5

histone markers and Dong et al. used 12 histone modification

markers and chromatin accessibility. For these two methods, K562

was the only overlapped cell line with our data. Ouyang et al. used

ChIP-Seq data of 12 TFs and only trained their model in mESC cells.

Karli�c et al. collected 19 histones modification in promoter regions

and also only trained model in mESC. For these two methods,

mESC was the only overlapped cell line with our data. Therefore,

we re-implemented these methods using the same cross-validation

strategy as DeepExpression in the corresponding matched cell line.

3 Results

3.1 HiChIP enhancer–promoter interactions are

discriminative features for predicting gene expression
Since no previous studies have shown contributions of chromatin

interactions to gene expression in a quantitative way, we first

devised and tested the ability of HiChIP enhancer–promoter interac-

tions to discriminate gene expression levels from the mESC cell line.

For each gene, we first simply extracted all the loops interacting

with it, then summed all the loop counts, which measure the

strength of an interaction, and drew the scatter plot of loop counts
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and gene expression. Figure 2A shows that the Pearson Correlation

Coefficient (PCC) between gene expression levels and total HiChIP

loop counts is up to 0.623. We also counted the number of loops of

each gene and drew the scatter plot of the number of loops and gene

expression. Figure 2B shows that correlation between gene expres-

sion and the number of HiChIP loops is also high with PCC around

0.583. We also tested the ability of HiChIP in human K562 cell line

(Supplementary Fig. S1) and got similar results. We could conclude

that these HiChIP signals are positively correlated with gene expres-

sions and provide informative features to predict gene expressions.

We further show a simple example of the relationship between gene

expression and HiChIP signal in three human cell lines. CTAGE8 is

an important paralog of CTAGE4, a gene associated with

Cutaneous T Cell Lymphoma (Usener et al., 2003). We find that

CTAGE8 only expresses in the HCT116 cell line and almost has no

expression in K562 and Jurkat. From HiChIP data, no enhancer-

CTAGE8 interactions are detected in K562 and Jurkat while two ac-

tive enhancer-CTAGE8 interactions are found in HCT116.

From the above analysis, we could draw the conclusion that cell-

type specific enhancer–promoter interactions obtained from HiChIP

indeed provide useful regulatory information on gene expression,

and thus are discriminative features for predicting gene expression.

3.2 DeepExpression accurately models gene expression
To recover the level of gene expression, we modeled gene expression

as the response variable and built DeepExpression regression model.

We compared the performance of DeepExpression regression with

three baseline methods, including linear regression, Lasso and ran-

dom forest regression. We also compared with our alternative

model, DeepExpression-seq, which discarded the HiChIP experi-

mental data integration module and regressed gene expression using

only DNA sequence information. We systematically evaluated the

performance of DeepExpression in capturing gene expression codes

via a series of carefully designed multi-fold cross-validation experi-

ments. We repeated the cross-validation experiments for the differ-

ent number of folds, evaluated the performance of each method

using PCC scores, and reported the regression performance in

Figure 3.

As shown in Figure 3, our method consistently outperforms all

the baseline methods. For example, in the 10-fold cross-validation

experiment for mESC, the PCCs of our method are on average

0.0404, 0.1669 and 0.2763 higher than random forest regression,

Lasso and linear regression, respectively. It is also worth noting that

the DeepExpression-seq model is also superior to the three baseline

methods and performs more stably. For example, in the 10-fold

cross-validation experiment for mESC, the PCCs of

DeepExpression-seq are on average 0.0020, 0.1227 and 0.2321

higher than random forest, Lasso and linear regression, respectively.

Our method also demonstrates much stronger robustness than the

baseline methods in the regression task. With variances of PCCs cal-

culated for cross-validation experiments of different folds for each

cell line, one-sided paired-sample Wilcoxon rank sum tests as

described in the previous section consistently suggest that our

method achieves significantly smaller variance than a baseline

method (P-value < 3.6e-8 for all the three methods).

Besides, we also modeled gene expression as a binary classifica-

tion problem (Supplementary Methods) and reported the perform-

ance of DeepExpression classification model in Supplementary

Figure S2. Furthermore, we compared the performance of

DeepExpression with other gene expression prediction methods in

specific cell lines and found that our method also achieved higher

performance than other methods (Supplementary Table S3). In sum-

mary, the superior performance of our method in all cell lines, and

in both regression and classification tasks, indicates the powerful

prediction ability of DeepExpression.

3.3 Cross-cell line and independent prediction
A HiChIP experiment provides a means of measuring how strong an

enhancer regulates a target gene in a cell line. We wonder whether it

could be possible to impute the expression of a gene in a cell line

with the incorporation of HiChIP experimental data of other cell

lines. To simulate this scenario, we performed a series of experi-

ments for cross-cell line prediction and independent prediction. For

cross-cell line prediction, we trained DeepExpression in a specific

cell line and predicted in another cell line. For independent predic-

tion, given a cell line, we used DeepExpression models trained on all

the other available cell lines to predict gene expression, and then

averaged over the predictions to obtain the final prediction result of

the gene.

We first used datasets of three human cell lines to demonstrate

the ability of our method to regress gene expression in a cross-cell

line manner. As shown in Figure 4, this independent predicting strat-

egy is consistently superior to the three baseline methods. In detail,

the PCCs of our method are on average 0.33, 0.30 and 0.27 higher

than random forest, Lasso and linear regression, respectively. We

also showed the cross-cell line prediction result in Supplementary

Table S4, where DeepExpression achieved higher performance than

baseline models. It is worth noting that DeepExpression-seq per-

forms well in within-cell line prediction tasks, its performance is

much lower in the cross-cell line predictions tasks (Supplementary

Table S5), because the expression values are different in different

cell lines but the promoter sequence inputs remain the same. Adding

the HiChIP information, DeepExpression well performs in both in-

dependent and cross-cell line prediction tasks.

These results suggest that by combining information of both pro-

moters and enhancer–promoter interactions, we might be capable of

predicting gene expression across different cell types. Notably, tak-

ing housekeeping genes (Eisenberg and Levanon, 2013) to evaluate

cross-cell line performance, we find that DeepExpression achieved

Fig. 2. (A) Scatter plot of HiChIP loop counts and gene expression in mESC

(PCC: 0.623). The color bar on the right indicates the density of the scatter

plot. (B) Scatter plot of the number of HiChIP loops and gene expression in

mESC (PCC: 0.583). The color bar on the right indicates the density of the scat-

ter plot. (C) Visualization of the HiChIP loops of CTAG8, the expression of

CTAG8 in K562, Jurkat and HCT116 cell lines respectively. (Color version of

this figure is available at Bioinformatics online.)
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higher performance for predicting housekeeping genes than all the

genes (Supplementary Table S6). We expect to train DeepExpression

in more and more cell lines incorporating HiChIP enhancer–pro-

moter interactions data, and consequently we could predict the gene

expression for a new cell line that has not been studied yet. More im-

portantly, we expect to learn the comprehensive and general gene

regulation mechanisms with enhancer regulation across different

cell lines.

3.4 Contributions of sequential and experimental

features
The distal enhancer–promoter interaction module incorporates ex-

perimental HiChIP long-range enhancer–promoter interaction infor-

mation into our methods. To prove that the experimental data is

informative, we performed a model ablation analysis by repeating

the cross-validation experiments with the enhancer–promoter inter-

action modules excluded. In a similar way, we excluded the pro-

moter module to evaluate its contribution.

As shown in Figure 5, there are evident differences in the contri-

butions of the proximal promoter and distal enhancer–promoter

interaction module. Taking mESC as an example, after removing

the promoter module, the mean PCC decreases by 23.64%. When

removing the enhancer–promoter module, however, the mean PCC

drops by 8.39%. Obviously, promoter sequences provide more in-

formation than enhancer–promoter interaction data to predict gene

expression. We speculate that there are two reasons accounting for

this phenomenon. First, we incorporate HiChIP enhancer–promoter

interactions using a fine-tuning way, while those primitive feed-

forward networks might not capture all the information in HiChIP

data. Second, since HiChIP is a newly developed experimental tech-

nique, there is no formal pipeline to process HiChIP data, and thus

we might lose some information during the processing procedure.

We also computed the contribution of enhancer–promoter inter-

actions and promoters at different distances. To evaluate the contri-

bution, we carried out the sensitivity analysis for different lengths of

the HiChIP experimental input region and different length of the

promoter sequential input region. The detailed results are shown in

Supplementary Tables S7 and S8. We could conclude that the infor-

mation of HiChIP enhancer–promoter interactions is most beneficial

from those within 6100 kbp around the TSS of a gene while the in-

formation of promoter sequential information is most beneficial

from TSS 61000 bp. However, we could still conclude that using se-

quential promoter data and experimental enhancer jointly effective-

ly improves the performance and play important roles in predicting

gene expression.

3.5 DeepExpression recovers TF binding motifs in

promoter and enhancer regions
The formation of enhancer–promoter interactions needs some struc-

tural proteins binding such as cohesin and other TFs binding

(Weintraub et al., 2017). One assumption is that some important

TFs/structure proteins will bind to both enhancer regions and pro-

moter regions (Supplementary Fig. S3) to help to form the three-

dimensional enhancer–promoter interactions (Kim and Shiekhattar,

2015). To evaluate the assumption and demonstrate the interpret-

ability of our model, we identified motifs learned from promoter

and enhancer regions separately and we found some motifs could be

identified in both promoter and enhancer regions. For promoter

regions, we identified motifs in the first convolution layer of

DeepExpression using the strategy described in Supplementary

Methods. For enhancer regions, we applied CisModule (Zhou and

Wong, 2004) to visualize motifs learned from enhancer sequences in

HiChIP data (Supplementary Methods). We then compared these

motifs with known Vertebrates motifs. Using motif comparison tool

TomTom with significant E-value threshold 0.05, we matched

about 65% (83/128) of motifs learned in promoters to known motifs

in different cell lines, as shown in Figure 6, while we matched about

92% (22/24) of motifs from HiChiP interactions in Figure 7.

Moreover, the four distinguished motifs learned from promoter

regions are also learned by the CisModule.

To name a few, we showed some motifs learned both in pro-

moter and enhancer regions: in mESC, DeepExpression recovers

Nanog, a transcription factor involved in embryonic stem cell prolif-

eration, renewal and pluripotency (Han et al., 2008). In HCT116,

DeepExpression recovers FOXQ1, a member of the FOX gene,

which is involved in embryonic development, cell cycle regulation,

tissue-specific gene expression, cell signaling and tumorigenesis

(Qiao et al., 2011). In Jurkat, DeepExpression discovers ETS1,

which functions either as transcriptional activators or repressors and

are involved in stem cell development, cell senescence and death,

and tumorigenesis (Thomas et al., 1995). In K562, DeepExpression

discovers MYC that plays a role in cell cycle progression, apoptosis

and cellular transformation (Gomez-Casares et al., 2013).

Amplification of this gene is frequently observed in numerous

Fig. 4. The independent prediction performance measured in PCC at different

testing cell lines. Given a cell line, we used DeepExpression models trained

on all the other available cell lines to predict gene expression, and then aver-

aged over the predictions to obtain the final prediction result of the gene

Fig. 3. The regression performance measured in PCC at different K-folds

cross-validation experiments (K¼ 5, 10, 15, 20)
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human cancers. Translocations involving this gene are associated

with Burkitt lymphoma and multiple myeloma in human patients

(Ceballos et al., 2000).

The consistency of TFs discovered in promoter regions and en-

hancer regions explains why using both promoters and enhancers

features jointly could improve DeepExpression performance. The

powerful learning ability of DeepExpression could not only help us

find potential TFs binding in a specific cell line, but also guide us to

find novel motifs which have not been discovered by experiments

yet. Furthermore, the motif relevance in promoter regions and en-

hancer regions will be modeled explicitly in future version of

DeepExpression.

4 Discussion

We have introduced a deep learning framework named

DeepExpression to integrate DNA sequence information and

enhancer–promoter interaction data for modeling gene expression.

Through comprehensive validation experiments, we have shown

that DeepExpression is superior to baseline methods in different cell

lines and different species, is capable of making cross-cell line pre-

dictions, and is interpretable in extracted features.

DeepExpression is distinct from other methods for predicting

gene expression in the following aspects. First, we adopt novel state-

of-the-art 3D HiChIP experimental features while existing methods

only use 1D features such as histone modification and chromatin ac-

cessibility (Shu et al., 2011). HiChIP defines the high-resolution

landscape of enhancer–promoter regulation. Many complex features

of the 3D enhancer connectome cannot simply be predicted from 1D

data, demonstrating that it is necessary to employ these features.

Second, we combine promoters and enhancer features together to

model gene expression. Enhancers and promoters are the most im-

portant cis-regulatory elements and have a huge impact on gene ex-

pression. Taking these two types of features into account, we could

better model gene expression.

It is worth noting that DeepExpression performs better in stem

cells than other differentiated cell lines. One reason for this phenom-

enon may be that the gene expression pattern in stem cell is much

simpler than other differentiated cell lines, especially K562, Jurkat

and HCT116 are all cancer cell lines. The expression patterns might

be dysregulated in these cell lines so it is much more difficult to pre-

dict the gene expressions.

Nevertheless, our work can be further improved in several

aspects. First, the adaptation of an embedding representation of

DNA sequences instead of using the one-hot encoding may also

benefit the prediction accuracy (Min et al., 2017a, b). Second, since

we have shown that the first convolutional layer could capture motif

information, researchers may use our model to learn the complex

grammar of TF binding in specific cell lines. In addition, one can

also explore interactions of motifs in higher convolutional layers.

Third, our deep learning framework can possibly be adapted for the

integration of other 3D functional elements interactions in the gen-

ome, including but not limited to silencers, repressors and insulators

(Raab and Kamakaka, 2010). Fourth, we could better model the

motif information located in promoter and enhancer regions.

Fig. 5. Contributions of sequential promoter and experimental enhancer fea-

tures. We performed a model ablation analysis by repeating the cross-valid-

ation experiments with the enhancer–promoter interaction modules excluded

to evaluate the contribution

Fig. 6. Motif visualization by promoter regions in each cell line

Fig. 7. Motif visualization by enhancer regions in each cell line
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Through Section 3.5, we could de novo discover important motifs in

promoters and enhancers respectively. We could combine these motifs

information in a unified framework to model gene expression. Fifth,

we can try to perform cross-species prediction to measure the ‘cross-

species gap’ (Normand et al., 2018). Sixth, we could incorporate

image-like HiChIP data using the densely connected CNN to better

extract the experimental features. Seventh, since 1D features have

shown to effective to predict gene expression, we can further integrate

1D features such as chromatin accessibility from ATAC-seq data. Last

but not least, we look forward to deciphering the enhancer–promoter

interactions regulatory mechanism across species.
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