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Integrating multi-omics data to better interpret transcription control 
and reveal regulatory mechanisms is of fundamental importance. 
Usually, high-dimensional data are mathematically represented 
and modelled in a biological network in which nodes represent 
biological units and edges represent the interactions between the 
units. Recent progress in representation learning has demonstrated 
the possibility of embedding heterogeneous networks with mul-
tiple types of nodes and links in low-dimensional vector space1. 
In particular, Cao et al. have utilized a state-of-the-art embed-
ding method, GEEK (‘Gene Expression Embedding frameworK’), 
to combine biological networks and omics data with the metapath 
concept1, and have produced interpretable biological knowledge 
such as gene function, protein complex, chromatin domain and  
replication timing2.

To demonstrate the robustness and re-usability of the embedding 
framework, we carried out two different downstream tasks that are 
complementary to the GEEK study: (1) integrating the regulatory 
information embedded in vectors generated by GEEK to regress 
the gene expression level in K562 cells using DeepExpression3 
and (2) incorporating an attention score based on GEEK embed-
ding vectors to prioritize genetic variants for high-altitude adapta-
tion around the EPAS1 region in human umbilical vein endothelial 
cells (HUVECs), as also identified by vPECA (‘variants interpre-
tation method by paired expression and chromatin accessibility’) 
in a previous publication4. Briefly, DeepExpression is a densely 
connected convolutional neural network for integrating DNA 
sequence information and enhancer–promoter interaction data 
to model gene expression, and vPECA is a variant interpretation 
method for identifying active selected regulatory elements (REs) 
and the associated regulatory network. Our objective is to evalu-
ate the regulatory information in GEEK embedding vectors by 
investigating whether the performance of those methods can be 
improved with the incorporation of the vectors. The results show 
that GEEK embedding vectors are informative for predicting gene 
expression and potentially useful in prioritizing genetic variants. 
Applications using the embedding vector from GEEK should be 
carefully interpreted with consideration of their context-specific and  
non-specific information.

Predicting gene expression using DeepExpression
We first systematically compared the performances of GEEK 
embedding vectors, sequence-based embedding vectors and 
three-dimensional (3D) HiChIP interactions in the task of regress-
ing gene expression level in K562 cells using the DeepExpression 
model3. Given feature vector x and gene expression value y, we 
solved the following optimization model (1) to fit a complex 
hierarchical function f (xi;W) by determining the collection of  
weights W :

minW{
1
n

n∑

i=1
(yi − f (xi;W))2 + λJ(W)} (1)

J(W) is a non-negative term on elements of W  with various 
types of regularization3 and λ ≥ 0 is a tuning parameter.

Feature vector x can be constructed in three ways (Fig. 1) 
(throughout, for information on the code and data used here, see 
the ‘Code availability’ and ‘Data availability’ sections). For the 
GEEK embedding vectors (‘Embedding’ in Table 1), we retrained 
GEEK without gene expression level to obtain a 96D real vector 
for each gene as input for fair comparison. We confirmed that the 
pre-trained embedding vectors were obtained without gene expres-
sion data to avoid possible information leakage. This is equivalent 
to an ablation study with GEEK using the N + A strategy with net-
work information (N) and DNase I hypersensitivity attributes (A). 
For sequence-based embedding vectors (‘Sequence’ in Table 1) 
we extracted the DNA fragments of 2,000 base pairs (bp) around 
the transcription start site (TSS) of a gene as its promoter region, 
utilized the encoding layer to encode the nucleotide in each posi-
tion as a 4D one-hot binary vector, and obtained a 4 × 2,000 binary 
matrix as input. For 3D HiChIP interactions (‘HiChIP’ in Table 1), 
following DeepExpression, we took signals (loop counts in HiChIP 
experiments) for bins to form a 400D input vector. As shown in 
Table 1, all three features (Sequence, Embedding and HiChIP) 
from the different approaches are predictive for gene expression 
in K562 cells (Pearson correlation coefficient (PCC) score of >0.4 
for all cross-validation experiments; comparisons were carried out 
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with the same cross-validation process). Among these features, 
sequence-based embedding vectors achieved higher performance 
than GEEK embedding vectors and 3D interactions. The combina-
tion of GEEK embedding vectors and the other two types of feature 
further improved the regression performance, demonstrating the 
importance of DNA sequence and 3D interactions. We performed 
additional experiments to embed the vector by only using network 
information (N) and only using DNase I hypersensitivity attributes 
(A), and compared these two strategies with our current implemen-
tation (N + A). We substituted the GEEK Embedding module from 
N + A separately into N and A. We found that the combination of 
the Sequence module (S) and GEEK Embedding module (N + A) 
yielded the best performance, with a PCC score of 0.652. This con-
firms that the combination of these two types of feature (N + A) 
improves the performance. With the Sequence module, the network 
information (S + N) and DNase I hypersensitivity (S + A) attributes 

performed similarly in predicting the gene expression level, with 
PCC scores of 0.612 and 0.613. This is slightly different from the 
ablation results in supplementary fig. 14 of ref. 2 after combination 
with the Sequence module. Simply dropping gene expression data 
and chromatin accessibility data from the GEEK learning leads to 
reasonable performance by leveraging the power of the Sequence 
module. Indeed, with the Sequence module, incorporation of the 
context-specific data of GEEK mildly outperformed the founda-
tional metapath2vec model1.

Prioritizing genetic variants for high-altitude adaptation
We next utilized the regulatory information embedded in GEEK 
vectors to prioritize genetic variants. The idea is to leverage the 
regulatory impact on gene regulation embedded in the omics data 
of relevant cell types to correlate large-scale phenotype-associated 
noncoding variants. We used the attention score5 to summarize an 
embedded vector as a regulatory score, and then associated this 
score with variants. In detail, the embedded vectors were obtained 
from GEEK pre-trained vectors in normal HUVEC cells. Let X be 
a p × N embedding matrix, where N denotes the number of genes 
and p the length of the embedding vector (p = 128). Let xi be the ith 
column of X, representing the embedding vector of gene i. Similarly, 
let W be the embedding matrix with p × M dimension, where M 
denotes the total number of 10-kb windows. Let wj be the jth col-
umn of W, denoting the embedding vector of window j. The atten-
tion score of the ith gene and the jth window, αij, is calculated as

αij =
exp

(
xTi wj

)
∑M

k=1 exp
(
xTi wk

) (2)
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Fig. 1 | Modified DeepExpression framework with GEEK embedding vectors. The modified DeepExpression framework consists of three modules: (1) 
sequence-based embedding vectors, which take the one-hot promoter sequence as input, (2) 3D HiChIP interactions, which take the HiChIP signal as 
input and (3) GEEK embedding vectors, which take the GEEK vectors as input. The network structures of the Sequence and HiChIP modules remain the 
same as the original DeepExpression, while the GEEK module is the same as the HiChIP interaction module.

Table 1 | Regression performance of different combinations of 
inputs measured as PCC in 10-fold cross-validation experiments

Input Mean PCC score

Sequence + Embedding 0.6837

Sequence + HiChIP 0.6552

HiChIP 0.4396

Embedding 0.5142

Sequence 0.5982

PCC is calculated between gene expression levels from RNA-seq and predicted values from 
different types of feature.
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We then associated the attention score with positively selected 
variants underlying the high-altitude adaptation of Tibetan indi-
viduals6 in HUVEC cells, which are oxygen-sensitive and serves as 
a classic model to study oxidative stress and cellular responses to 
hypoxia. We obtained a total of 4,627,029 variants after variant call-
ing from the whole-genome sequencing data of 38 Tibetan high-
landers and 39 Han Chinese lowlanders6. For each single nucleotide 
polymorphism (SNP), we computed the fixation index (Fst)7, a 
widely used statistic in population genetics to detect potential 
positive selection among different populations. EPAS1 showed the 

strongest signal in selective sweeps8,9, so we focused on variants with 
high Fst scores around EPAS1.

We calculated the attention matrix of all genes on chromosome 
2 (hg19) and each 10-kb window (in the range [−1M, +1M] from 
TSSs) in HUVEC cells with equation (2), then applied quantile 
normalization over the columns of the attention matrix to correct 
the bias between genomic windows (Fig. 2a). The selection status 
of each 10-kb window was calculated as the maximum Fst score of 
all SNPs within the window (Fig. 2a). For the [−1M, +1M] region 
around EPAS1, several windows achieve a high attention score, for 
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Fig. 2 | Identifying key regions around EPAS1 in HUVEC cells for high-altitude adaptation by attention score. a, Attention score for all genes and their 
neighbouring 10-kb windows on chromosome 2. Top: attention scores (as a heatmap) for each gene and all 10-kb windows within [−1M, +1M] of the 
TSS. Bottom: the selection score for each 10-kb window, calculated as the maximum Fst score of all SNPs within the window. All genes and windows are 
sorted by genomic coordinate. b, Multi-omics data around EPAS1 in HUVEC cells. Hi-C loops, epigenomic marks from ENCODE, attention score, selection 
score (Fst) for each SNP and the top 10 selected 10-kb windows are visualized in the [−1M, +1M] region from the TSS of EPAS1. The y axes of traces for 
DNase-seq, H3K27ac, H3K4me1 and H3K4me3 represent −log10 P values. The attention scores (ASs) are calculated using equation (2) and are normalized 
by the maximum value, that is, normalized AS = AS/max(AS). The top 10 bins were selected as the geometric mean of the attention score and the 
selection score (Table 2).
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example B6 and B7 downstream of EPAS1 and B1–B5 and B8 in the 
gene body (Fig. 2b and Table 1). These positions with high attention 
scores locate in functional genomic regions such as open chromatin 
and histone modifications. The DNase-seq, H3K27ac, H3K4me1 
and H3K4me3 data were downloaded from the ROADMAP epig-
enomics project (https://egg2.wustl.edu/roadmap/web_portal/
imputed.html). The Hi-C loops in HUVEC cells were obtained from 
the GEO database (accession no. GSE63525)10. To identify func-
tional regions under strong selection, we incorporated the attention 
score and the Fst score as a geometric mean. Top 10 regions were 
identified from both regulation and selection evidence (Table 2 and 
Fig. 2b). The top five regions, that is, B1–B5 in Table 2, were also 
identified as potential causal regulatory regions in our recent study4.

We note that regulatory information embedded in GEEK vec-
tors can provide local information for the effects of genetic variants. 
There is no global concordance between Fst score and attention 
score. The Spearman correlation between the attention score from 
HUVEC cells and Fst across chromosome 2 is −0.0086. This is to be 
expected, because the Fst score encodes the information in DNA by 
natural selection, which has effects in many cell types and tissues. 
For example, we counted the number of overlaps of a given set of 
31 SNPs with high Fst scores near EPAS1 with predicted enhanc-
ers in 128 cell types (H3K27ac gapped peaks) from the ROADMAP 
database. Eighty-one cell types overlapped at least one high-Fst SNP, 
with a maximum of 23 overlapped, while HUVEC cells covered 11 
SNPs and missed the other 20 SNPs. This is consistent with the fact 
that attention score is derived from HUVEC cell types and encodes 
the condition-specific regulatory information. Thus, the utility 
of our prioritization approach is not guaranteed globally and the 
GEEK embedding vector should be interpreted carefully as a mix-
ture of context-specific and non-specific information.

Discussion
The above results indicate that regulatory information in GEEK 
embedding vectors is useful for modelling gene expression and 
potentially helpful in prioritizing genetic variants in some applica-
tions. Additionally, the minimal demonstrative GEEK pipeline at 
Code Ocean (https://codeocean.com/capsule/3404879/tree/v1)11 
can reproduce the original results in ref. 2 and further facilitate the 
development of downstream applications. Overall, we have dem-
onstrated the robustness and re-usability of the GEEK embedding 
framework and shown its convenience for follow-up studies by 
representing the network as a vector. After systematic evaluation 
of GEEK and other applications, we expect that the incorporation  
of sequence-based features and 3D chromatin interaction-based 

features into a unified framework may provide a holistic perspective 
to understand gene transcriptional control and potentially provide 
insights to identify genome-wide association study risk variants. In 
addition, multidimensional summaries of omics data can be fur-
ther integrated into sophisticated statistical models. For example, 
the STAAR model introduces ‘annotation principal components’ 
to effectively summarize multiple qualitative and quantitative vari-
ant functional annotations to boost the power of variant set tests 
for continuous and binary traits in whole-genome sequencing rare 
variants association studies12.

Data availability
The data used in our K562 and HUVEC studies with the retrained 
GEEK model are available at https://zenodo.org/record/4797001#.
YK3HLS21FN011. All the GEEK data2 are available at http://yiplab.
cse.cuhk.edu.hk/geek/, https://zenodo.org/record/3040059, http://
www.ncbi.nlm.nih.gov/geo/ (accession no. GSE145774) and the 
Genome Sequence Archive (project no. CRA002025).

Code availability
GEEK is freely available at https://codeocean.com/capsule/3404879/
tree/v113. Modified DeepExpression for reproduction is freely avail-
able at https://github.com/wanwenzeng/DeepExpression14. vPECA 
is freely available at https://github.com/jxxin22/vPECA15. Details of 
the methods are available in refs. 2–4.
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